Author Archive

ChemComm – Welcome to our new Advisory Board members

This year, we have welcomed twenty new members to our Advisory Board. Learn about each member below.

Brendan Abrahams, University of Melbourne, Australia. Professor Abrahams graduated with a PhD in 1989 working in the area of cadmium and mercury coordination chemistry. He was appointed to ongoing teaching-research position within the School of Chemistry at the University of Melbourne in 2004. In addition to coordination polymers his current interests include supramolecular chemistry and crystal engineering.
Raffaella Buonsanti, EPFL, Switzerland. Professor Buonsanti’s group works at the interface of materials chemistry and catalysis; they focus on developing a fundamental understanding of the chemistry behind the formation of colloidal nanocrystals and they use them as controlled and tunable electrocatalysts for the conversion of small molecule into value-added chemicals
Jyotirmayee Dash, Indian Association for the Cultivation of Science, India. Professor Dash’s research interests are synthesis of natural products, the self-assembly of nucleobases and the recognition and regulation of nucleic acids.
Sujit Ghosh, IISER Pune, India. Professor Ghosh’s major research areas include Luminescent MOFs, Chemical sensors, Pollutants capture, Ion exchange materials, hydrocarbons separation etc. suited for potential applications in the chemical industry and environmental issues.
Robert Gilliard, University of Virginia, USA. The Gilliard laboratory focuses on understanding structure-function relationships in main-group thermochromic, luminescent, and radical materials, as well as the structure and reactivity of low-valent main-group organometallics.
Shaojun Guo, Peking University, China. Professor Guo holds a BS in Materials Chemistry from Jilin University and a PhD in Analytical Chemistry from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. His current research interests are nano/sub-nano/atomic materials for catalysis and energy applications.
Amanda E. Hargrove, Duke University, USA. Professor Hargrove earned her Ph.D. in Organic Chemistry from the University of Texas at Austin followed by an NIH postdoctoral fellowship at Caltech. Professor Hargrove’s laboratory focuses on developing small molecule probes to investigate the structure and function of RNA molecules relevant to human disease.
Ilich A. Ibarra, National University of Mexico, Mexico. Professor Ibarra moved in 2014 to Universidad Autónoma de México working as an Assistant Professor. In 2017 he was promoted to Associate Professor. In 2019 he was awarded with the “Young Investigators Award in Exact Sciences”, UNAM, Mexico.
Silvia Marchesan, University of Trieste, Italy. Professor Marchesan’s research interests lie at the interface between chemistry, biology, and materials science for the development of innovative solutions through the design of nanostructured systems with an eye to the environment (www.marchesanlab.com).
Alexander J. M. Miller, University of North Carolina at Chapel Hill, USA. Professor Miller’s research group takes a mechanism-guided approach to the design and discovery of molecular catalysts for sustainable chemical and fuel synthesis.
Ellen Sletten, University of California, Los Angeles, USA. Professor Sletten began her independent career at UCLA in 2015 and has established an interdisciplinary research program that leverages the tools of physical organic chemistry to create new therapeutic and diagnostic technologies.
Mizuki Tada, Nagoya University, Japan. Professor Tada was appointed full professor at Nagoya University in 2013. Her research interests are the areas of heterogeneous catalysis, coordination chemistry, three-dimensional imaging of solid materials using hard X-ray spectroscopy. 
Judy Wu, University of Houston, USA. Professor Wu’s research interests span physical organic chemistry, photochemistry, and supramolecular chemistry. Judy was the recipient of an NSF CARERR award, an NIH-MIRA award, and a Sloan Research Fellowship.
Yi Xie, University of Science and Technology of China, China. Professor Xie is a recipient of several awards, including L’Oréal-UNESCO for Women in Science Awards, TWAS Prize for Chemistry, IUPAC Distinguished Women in Chemistry/Chemical Engineering, Nano Research Award. Her research interests focus on the design and synthesis of inorganic functional solids with efforts to modulate their electronic and phonon structures.
Qiang Zhang, Tsinghua University, China. Professor Zhang’s current research interests are advanced energy materials, including dendrite-free lithium metal anode, lithium sulfur batteries, and electrocatalysis, especially the structure design and full demonstration of advanced energy materials in working devices.
Wenwan Zhong, University of California, Riverside, USA. Professor Zhong’s research is devoted to develop innovative bioanalytical techniques to advance the understanding on how biomolecules function and to improve disease diagnosis and treatment.
Eli Zysman-Colman, University of St. Andrews, UK. Professor Zysman-Colman’s research program focuses on the rational design of: (I) luminophores for energy-efficient visual displays and flat panel lighting based on organic light emitting diode (OLED) and light-emitting electrochemical cell (LEEC) device architectures; (II) light harvesting dyes for dye-sensitized solar cells (DSSCs) and organic photovoltaics; (III) sensing materials employed in electrochemiluminescence; and (IV) photocatalysts for organic reactions.
*Appointed but not pictured: Lifeng Chi and Arindam Chowdhury

Read the collection of high-impact articles from our new members: https://rsc.li/advisoryboard2020 Free to access until 21st August.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Han Xiao

We’re celebrating researchers who published their first independent article with ChemComm. Dr Han Xiao published his first article in 2018: A noncanonical amino acid-based relay system for site-specific protein labeling. We wanted to find out more about Han and his research – Read more below.


What are the main areas of research in your lab and how has your research progressed since publishing your first article?
Understanding complex biological systems and developing novel therapeutic approaches requires explorations at the interface of chemistry and biology. The focus of our research is the development of various chemical tools that allow us to precisely probe and manipulate biological systems. We are interested in (1) adding new building blocks with novel chemical, biological, and physical properties into different biological systems; (2) enhancing the performance of chemical biological tools for a variety of applications; (3) using these tools to better understand and ultimately control various biological processes; and (4) exploring the therapeutic utilities of these tools in the context of cancer, autoimmune, and metabolic diseases. My program has a strong translational focus, seeking to initiate new clinical opportunities, and contribute to advances in chemical biology, glycobiology, and cancer immunology.
Our article demonstrates the first application of autonomous cells with the endogenous ability to biosynthesize different noncanonical amino acids and incorporate them into proteins. Noncanonical amino acid, p-amino-phenylalanine, was biosynthesized in E. coli, followed by site-specific incorporation into a specific protein residue. The resulting protein was ready for functionalization using an oxidative conjugation reaction. We are continuing cells utilizing a 21st amino acid and further examine their utility in protein evolution and therapy development.

What do you hope your lab can achieve in the coming year?
Although I have been building my independent research profile at Rice, I am actively exploring new research directions by collaborating with researchers in different fields. I hope we can tell you more of these exciting works in the coming year.

Describe your journey to becoming independent researcher.
My academic training and research experience have provided me with a broad background in multiple disciplines, which is critical for me to build up my independent research program. As an undergraduate, I supported Dr. Liu-Zhu Gong’s group (USTC) by developing flexible routes to synthesize chiral amines in alkaloid nature products. As a graduate student, I joined Dr. Peter G. Schultz’s lab at the Scripps Research Institute (TSRI). My graduate work was mainly focused on expanding the technique of genetically incorporating noncanonical amino acids in both prokaryotic and eukaryotic organisms and applying this technique for better cancer therapeutics. To further my goal of becoming a professional scientist, I started my post-doctoral research career in Prof. Carolyn R. Bertozzi’s laboratory at Stanford University, whose lab has extensive experience in studying cancer-associated glycosylation. I learned a lot from my previous advisors about how to carry out projects as well as run a lab. The different training experiences from these labs laid the foundation for the interdisciplinary program I would like to build up at Rice University.

What is the best piece of advice you have ever been given?
The best advice was given to me by my parents: Prepare for the Future.

Why did you choose to publish your first article in ChemComm?
ChemComm is a renowned journal with a large readership from all chemistry disciplines as well as interdisciplinary fields. I am very happy to publish our first work in ChemComm.

Biography
Han Xiao is an Assistant Professor of Chemistry and Biosciences at Rice University. Han obtained his undergraduate degree from the University of Science and Technology of China (USTC) where he graduated with a B.S. in chemistry and an honors degree in physical science. He conducted undergraduate research in Prof. Liu-Zhu Gong’s group, focusing on organic methodology and synthesis of natural products. After graduating from USTC in 2010, Han joined the Ph.D. program at the Scripps Research Institute (TSRI). His thesis work with Prof. Peter G. Schultz focused on expanding the technique of genetically incorporating unnatural amino acids in both prokaryotic and eukaryotic organisms and applying this technique for better cancer therapeutics. In 2015, Han joined the laboratory of Prof. Carolyn R. Bertozzi as a Good Ventures Postdoctoral Fellow of the Life Science Research Foundation at Stanford University. In his postdoctoral work, he was engaged in the development of novel cancer immune therapy targeting the cell-surface glycans axis of immune modulation. In July 2017, Han started his independent research at Rice University. Find him on Twitter: @Han_Xiao2016

 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Hiroshi Yamagishi

Hiroshi Yamagishi recently published his first independent research article with ChemComm. We wanted to celebrate this exciting milestone by finding out more about Hiroshi and his research. Check out his #ChemComm1st article: Facile light-initiated radical generation from 4-substituted pyridine under ambient conditions

We asked Hiroshi a few questions about his experience in the lab and working with ChemComm. Read more below.

What are the main areas of research in your lab and what motivated you to take this direction?

After receiving the PhD for the synthesis and fundamental structural investigation of supramolecular porous fibers and crystals, I was motivated to expand this research topic in regard to their functionality. Our group in University of Tsukuba is now focusing on the synthesis of molecular porous aggregates and investigating their host–guest chemistry and optical functions.

Can you set this article in a wider context?
The host porous crystal, Pyopen, is an attracting and counterintuitive compound. Although the constituent organic molecules are bound together via labile van der Waals-like forces (C–H···N bonds), the porous framework exhibits high thermal stability. Distinct from the conventional MOFs, COFs, or HOFs, the stability of Pyopen is based on the packing mode or the interdigitation of the molecules. We expect that the difference in the bonding regime should result in novel outcomes, and we are now investigating a series of chemical and physical characters of such molecular porous crystals sustained by van der Waals crystals. This article highlights one of the intriguing optical and chemical features of the van der Waals crystals.

What do you hope your lab can achieve in the coming year?

One of the fundamental yet challenging topics in the field of van der Waals porous crystal is to establish a molecular design strategy. Distinct from the MOFs, COFs, or HOFs, the prediction or designing of van der Waals porous crystal is yet to be established due to the extremely low bonding energy and the low directionality of van der Waals force. This topic is what I am now trying to overcome in the coming year.

Describe your journey to becoming independent researcher.

In the course of the PhD, I fortunately received an offer as a researcher from a chemical company and was really willing to join after I got the PhD. However, when I visited the UK as a guest researcher for half a year before joining the company, I occasionally met with a colleague in the University of Tsukuba there, who also visited UK for Sabbatical and proposed to me a position in University of Tsukuba. Through this experience, I understood from the heart the meaning of the sentence: “Nobody knows the future”.

What is the best piece of advice you have ever been given?

An advice from a colleague of mine was indeed impressive and encouraging to me. In the course of a discussion about a research result, he said “I hate the word ‘failure’. You did not fail, but revealed a novel fact that the reaction proceeded in a different way from what you expected”.

Why did you choose to publish in ChemComm?

ChemComm is a renowned journal that covers the diverse chemical sciences. Chemical Science is also attractive to me, but I prefer the communication format for publishing our results with urgency. Therefore, I chose ChemComm.

I am an Assistant Professor in Department of Materials Science, University of Tsukuba since 2018. I was educated at the University of Tokyo, gaining a PhD in 2018 for the development of intricate nanoporous organic and metal¬–organic architectures with distinct structural flexibility. I am currently focusing on optical resonators based on supramolecular aggregates with a view to realizing flexible lasers, displays, optical circuits and sensors. Compounds of interest covers organic linear and dendritic polymers, organic and metal–organic crystals, and organic liquid.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Virtual issue on Aggregation-induced Emission (AIE)

We’re celebrating the upcoming 20th anniversary of aggregation-induced emission (AIE), a term which was first coined in 2001. We’ve put together a collection of key AIE articles published in RSC journals. Here are the articles in the collection from ChemComm, including the very first AIE article!

Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole
Ben Zhong Tang et al
Chem. Commun., 2001, 1740–1741

A conical intersection model to explain aggregation induced emission in diphenyl dibenzofulvene
Quansong Lia and Lluís Blancafort
Chem. Commun., 2013, 49, 5966

Diarylboryl-phenothiazine based multifunctional molecular siblings
Kalluvettukuzhy K. Neena, Pakkirisamy Thilagar* et al.
Chem. Commun., 2017, 53, 3641-3644

Aggregation-induced emission in precursors to porous molecular crystals
Zhenglin Zhang, Ognjen Š. Miljanić* et al.
Chem. Commun., 2017,53, 10022-10025

A cyanine-based fluorescent cassette with aggregation-induced emission for sensitive detection of pH changes in live cells
Mingxi Fang, Haiying Liu* et al.
Chem. Commun., 2018,54, 1133-1136

AIE-active micelles formed by self-assembly of an amphiphilic platinum complex possessing isoxazole moieties
Takehiro Hirao,Takeharu Haino* et al.
Chem. Commun., 2020,56, 1137-1140

A self-delivery DNA nanoprobe for reliable microRNA imaging in live cells by aggregation induced red-shift-emission
Zhe Chen, Leilei Tian* et al.
Chem. Commun., 2020,56, 1501-1504

A light-up probe with aggregation-induced emission characteristics (AIE) for selective imaging, naked-eye detection and photodynamic killing of Gram-positive bacteria
Guangxue Feng, Bin Liu* et al.
Chem. Commun., 2015, 51, 12490-12493

Rational design of substituted maleimide dyes with tunable fluorescence and solvafluorochromism
Yujie Xie, Rachel K. O’Reilly et al.
Chem. Commun., 2018,54, 3339-3342

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Malte Fischer

Malte Fischer recently published his first article as a corresponding author with ChemComm. We wanted to celebrate this exciting milestone by finding out more about Malte and his research. Check out his #ChemComm1st article: B(C6F5)3- and HB(C6F5)2-mediated transformations of isothiocyanates.

We asked Malte a few questions about his experience in the lab and working with ChemComm. Read more below.

What are your main areas of research and what motivated you to take this direction?

I would like to summarize the research I am doing and I am interested in, simply under the term “synthetic chemistry”. Specifically, I mean research within the interfaces of organic chemistry, main group chemistry and organometallic chemistry. I am enthusiastic about the progress – especially in recent years – in synthesis, method development and in the search for applications for new molecules. I am convinced that there will always be a need for effective synthesis routes to access unusual and new molecules and I very much hope that I can contribute to this.

Can you set this article in a wider context?

The article is settled in main group chemistry. During my PhD I became more and more interested in this exciting field of research. Based on the reported results I will continue the research in this field.

What do you hope you and your research can achieve in the coming year?

Despite this difficult time, I am simply looking forward to going back to the laboratory at some point to continue having fun in doing research.

Describe your journey to becoming an independent researcher.

I think the moment when I was able to synthesize and characterize my first molecule unknown in literature (happened during my bachelor thesis) inspired me so much that since then I have had the goal of doing independent research and realizing my own ideas. I am definitely still in the beginning of becoming an independent researcher and I am currently working on laying the foundation for it – and this work has given me a lot of pleasure so far.

What is the best piece of advice you have ever been given?

The best advice was given to me by my parents and I try to live by it as much as possible: Pursue what interests you most and captivates you – the rest will come naturally.

Why did you choose to publish in ChemComm?

ChemComm simply stands for publications of the highest quality and with a large readership from all chemistry sub-disciplines. I am immensely pleased to have become a small part of this journal with my first publication as the corresponding author.

Malte’s Bio:

The publication ‘B(C6F5)3- and HB(C6F5)2-Mediated Transformations of Isothiocyanates’ originates from the phase as a research scientist within the group of Prof. Beckhaus in Oldenburg.

05/2019 – 02/2020      Research Scientist/ PostDoc – Carl von Ossietzky University Oldenburg, Germany. Supervisor: Prof. Dr. Rüdiger Beckhaus

10/2015 – 05/2019      PhD in Chemistry. Carl von Ossietzky University Oldenburg, Germany. Supervisor: Prof. Dr. Rüdiger Beckhaus

10/2013 – 10/2015      Master of Science in Chemistry

10/2010 – 10/2013      Bachelor of Science in Chemistry

Find Malte on Twitter: @FiMalte

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Rob Woodward

Rob Woodward recently published his first independent research article with ChemComm. We wanted to celebrate this exciting milestone by finding out more about Rob and his research. Check out his #ChemComm1st article: ‘The design of hypercrosslinked polymers from benzyl ether self-condensing compounds and external crosslinkers’

We asked Rob a few questions about his experience in the lab and publishing with ChemComm. Read more below.

What are the main areas of research in your lab and what motivated you to take this direction?

Our primary research focus is the design and production of new porous organic polymers and carbons for a variety of separation and storage applications. These include solid-state extraction to remove pollutants from water, fractionation of complex mixtures, gas separation and storage, energy storage, and even catalysis. In order to approach such a wide variety of applications, we utilise a class of densely crosslinked porous polymers, known as hypercrosslinked polymers. The key feature of these networks is their simple and robust synthesis, allowing a vast array of aromatic compounds to be used as monomeric building blocks.

Our motivation is to try to use hypercrosslinked polymers to establish a platform for targeted adsorbent design. This would enable the engineering of networks customised to tackle specific problems. For example, if certain chemical functionalities or textural properties are known to be beneficial for a given application, we can envision a sort of ‘plug-and-play’ approach, in which various building blocks are used to produce adsorbents with the desired properties. Hypercrosslinked polymers are generally low-cost and have excellent chemical and thermal stabilities, issues that plague many classes of porous materials. Coupled with tailored design, these features may make hypercrosslinked polymers suitable for a broad range of applications, while remaining technically competitive with leading adsorbents.

Can you set this article in a wider context?

The article represents a new approach to the formation of hypercrosslinked polymers, in which conventional aliphatic crosslinkers are replaced with these benzyl ether aromatic compounds. The synthetic process remains the same, but the textural properties of the resulting polymer can be vastly improved, simply by changing a reagent. These compounds also showed unexpected benefits for hypercrosslinking reactions, allowing better control over the porous properties of networks and for reductions in the amount of catalyst required during synthesis, something currently considered a significant setback for hypercrosslinked polymers.

In a wider context, this work opens new routes to hypercrosslinked polymers where conventional approaches may fail or give poor results, presenting synthetic chemists more options with respect to designing new and improved adsorbents.

What do you hope your lab can achieve in the coming year?

Although I have been building my independent research profile while at Imperial College, I was just very recently appointed to an Assistant Professor position in The University of Vienna’s Faculty of Chemistry. This is really the beginning of my independent academic career with regards to establishing my own lab and research group. So, in all honesty, this year will look like a success to me if we can get the laboratory up and running, begin to build a strong research foundation, and establish a network in Vienna to try to begin some local collaborative work. We do have some exciting work due to come out soon which we hope to build from in the short term, but I won’t say too much about that just yet…

Describe your journey to becoming an independent researcher.

I was awarded both my MChem (2008) and PhD (2013) from The University of Liverpool, which is also my hometown. My PhD focused on the synthesis of responsive polymeric surfactants and colloidal systems. I then took up a short post-doctoral position in Prof. Andy Cooper’s group, where I first worked with porous polymeric materials. In 2014, I moved to London for a position in Imperial College London’s Department of Chemical Engineering in the Polymer and Composite Engineering group. There I started to explore other types of porous polymers, as well as investigating their application to several problems, such as energy storage, biomass treatment, and gas separation and storage. I was lucky to have great supervisors who were supportive of me establishing my own independent work. In 2017, I was awarded the Sir William Wakeham prize by Imperial for my research, which gave me the belief that I could pursue a career in academia. Finally, I was offered the role in Vienna just a few weeks ago! So, I am very excited to get that underway and to continue to explore my chosen research avenues.

What is the best piece of advice you have ever been given?

Tough question! Well, my dad always tells me that sometimes you must be a bit cheeky to get what you want – but I’m not sure how well that would go down with a review panel! I have had many great mentors in my academic life too, all of whom have given me advice that I will take forward. However, my PhD supervisor, Dr. Jonathan Weaver, not only taught me to face my demons head on but also assured me that I was able to. He taught me not to take life too seriously and that fostering happiness in all facets of your life was the key to success. Jon passed away at only 32 years old, before we could finish the PhD together, so his advice and guidance has become very special to me.

Why did you choose to publish in ChemComm?

I definitely envisioned the article as a Communication, a short proof of concept for this new approach to making hypercrosslinked polymers. I chose ChemComm as I know it has a great reputation and a broad readership, making it an ideal platform for me to report my work to researchers around the globe. Furthermore, this is the third article I have published in ChemComm (the first as an independent researcher) and the entire process has always been very smooth and transparent, so I was very happy to return.

Rob obtained his PhD from The University of Liverpool (UK) in 2013, before completing a short post-doctoral position in Prof. Andy Cooper’s group. In 2014 he moved to Imperial College London’s Department of Chemical Engineering, where he joined the Polymer and Composite Engineering group and began to build his independent research profile in the design and application of porous polymers. This year Rob was appointed as an Assistant Professor at the University of Vienna’s Institute of Materials Chemistry, marking the beginning of his independent academic career. Find Rob on Twitter: @robbiewoody

 

Read Rob’s #ChemComm1st article and others in our new collection ChemComm Milestones – First Independent Articles. Follow us on Twitter for the latest #ChemCommMilestones news.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to the 2020 Cram Lehn Pedersen Prize winner: Chenfeng Ke

We are proud to announce that Dr. Chenfeng Ke, at Dartmouth College, is the recipient of this year’s Cram Lehn Pedersen Prize in Supramolecular Chemistry! This prize, sponsored by ChemComm, is named in honour of the winners of the 1987 Nobel Prize in Chemistry and recognises significant original and independent work in supramolecular chemistry. Our warmest congratulations to Chenfeng, a well-deserved winner!


“The CLP prize was envisioned to recognize young investigators in the field of supramolecular chemistry. In his short career, Professor Chenfeng Ke has shown outstanding creativity in the development of 3D-printed mechanically interlocked monoliths. He has also discovered transformations of fluorescent supramolecular networks and their guest-induced expansion. These and other innovations show that Professor Ke is a premier supramolecular chemist.” –  Roger Harrison, Secretary of the ISMSC International Committee

Chenfeng received his PhD in Supramolecular Chemistry from Nankai University in 2009. The Ke Functional Materials Group focuses on developing smart materials for 3D/4D printing applications, elastic crystalline porous organic materials for energy and environmental related applications, and carbohydrate receptors for biological applications. The research scheme overlaps organic synthesis, crystal engineering, polymer synthesis, materials characterization, and 3D printing, with an emphasis on the design of supramolecular materials that are noncovalently assembled.

The award will be presented at the 15th International Symposium on Macrocyclic and Supramolecular Chemistry held in Sydney, 12 – 16th July 2020!
This annual conference consists of sessions of invited lectures that focus upon a single topic area, award lectures and poster sessions. The conference will also feature emerging investigator talks.

You can register here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

The Cram Lehn Pedersen Prize in Supramolecular Chemistry


 

The International Committee of the International Symposium on Macrocyclic and Supramolecular Chemistry is pleased to invite nominations for the Cram Lehn Pedersen Prize for young supramolecular chemists.

The Cram Lehn Pedersen Prize, named in honor of the winners of the 1987 Nobel Prize in Chemistry, will recognise significant original and independent work in supramolecular chemistry.

Those who were awarded their PhD on or after 1st January 2009 (or who have an award of PhD date together with allowable career interruptions* that would be commensurate with award of their PhD on or after 1st January 2009) are eligible for the 2020 award. The winner will receive a prize of £2000 and free registration for the ISMSC meeting in Sydney, Australia. In addition to giving a lecture at ISMSC, a short lecture tour will be organized after the meeting in consultation with the Editor of Chemical Communications, the sponsor of the award.

Nomination Details

You may nominate yourself, but a nomination letter is recommended. Nomination materials should include: CV, list of publications (divided into publications from your PhD and post-doc, and those from your independent work), and be sent to Prof. Roger Harrison (ISMSC Secretary) at roger_harrison@byu.edu by 31st December 2019.

*Allowable career interruptions include primary caregiver’s responsibilities, illness, disability or parental leave and must be outlined in a cover letter with supporting documentation. See  https://www.chem.byu.edu/faculty-and-staff/resources/international-symposium-on-macrocyclic-and-supramolecular-chemistry/awards/ for specific details.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Emerging Investigator Lectureship – nominations now open!

We are pleased to welcome nominations for the 2020 Emerging Investigator Lectureship for ChemComm.

All nominations must be received by Friday 29th November 2019.

ChemComm Emerging Investigator LectureshipChemComm Banner
• Recognises emerging scientists in the early stages of their independent academic career.
• Eligible nominees should have completed their PhD in 2012 or later.
Appropriate consideration will be given to those who have taken a career break or followed a different study path.

Lectureship details
• The recipient of the lectureship will be invited to present a lecture at three different locations over a 12-month period, with at least one of these events taking place at an international conference.
• The recipient will receive a contribution of £1500 towards travel and accommodation costs for their lectures, as well as a certificate.
• The recipient will be asked to contribute a review article for the journal.

How to nominate
Self-nomination is not permitted. Nominators must send the following to the editorial team via 
chemcomm-rsc@rsc.org by Friday 29th November 2019.
• Recommendation letter, including the name, contact details and website URL of the nominee.
• A one-page CV for the nominee, including a summary of their education, dates of key career achievements, a list of up to five of their top independent publications, total numbers of publications and patents, and other indicators of esteem, together with evidence of career independence.
• A copy of the candidate’s best publication to date (as judged by the nominator).
• Two supporting letters of recommendation from two independent referees. These should not be someone from the same institution or the candidate’s post doc or PhD supervisor.
• The nominator and independent referees should comment on the candidate’s presenting skills.

Incomplete nominations or those not adhering to the above requirements will not be considered, and nominees will not be contacted regarding any missing or incorrect documents.

Selection procedure
• The editorial team will screen each nomination for eligibility and draw up a shortlist of candidates based on the nomination documents provided.
• The recipient of the lectureship will then be selected and endorsed by a selection panel composed of members of the ChemComm Editorial Board. The winner will be announced in the first half of 2020.

NB: Please note that members of the selection panel from the ChemComm Editorial Board are not eligible to nominate, or provide references, for this lectureship.

For any queries, please contact the editorial team at chemcomm-rsc@rsc.org.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)