Author Archive

Intramolecular enolate arylation: formation of 4° amino-acid–derived hydantoins

The synthesis of quaternary amino acids is an important challenge facing researchers in bioorganic and medicinal chemistry. While there are a number of ways to transform tertiary amino acids into their quaternary counterparts, α-arylation of amino acids and their derivatives remains limited.

Now, in this HOT ChemComm article, Professor Jonathan Clayden and co-workers at the University of Manchester have revealed an elegant intramolecular arylation of tertiary amino acid derivates, which exploits the use of a urea linkage to connect the amino acid derivative—a nitrile or acid—and the aryl “electrophile”. During the course of the reaction, this N-aryl substituent migrates to the α-carbon of the amino acid moiety. This is followed by a cyclisation, leading to a heterocyclic hydantoin derivative. The reaction is mediated by strong base, and is thought to proceed via the metallated enolate.

Interestingly, the researchers found that the migration of the aryl ring was not influenced by its electronic properties, and that the transition-metal–free reaction could be applied successfully to a range of natural and unnatural tertiary amino acid substrates. If the tertiary amino acid nitrogen is protected with a PMB (p-methoxybenzyl) group, the resulting hydantoin product can subsequently be hydrolysed, affording the acyclic quaternary amino acid.

The reaction was monitored by in situ infrared spectroscopy (ReactIR) to identify the reaction intermediates and cast light on the mechanism of the arylation. Further details of the ReactIR analysis can be found in the electronic supplementary information. Ultimately, Clayden and his group hope to further develop this useful methodology to allow the enantioselective arylation of amino acids.

For more, check out this HOT ChemComm article in full:

Rachel C. Atkinson, Daniel J. Leonard, Julien Maury, Daniele Castagnolo, Nicole Volz and Jonathan Clayden
Chem. Commun., 2013, 49, 9734–9736
DOI: 10.1039/C3CC46193A

Ruth E. Gilligan is a guest web-writer for ChemComm.  She has recently completed her PhD in the group of Prof. Matthew J. Gaunt at the University of Cambridge, focusing on the development and application of C–H functionalisation methodology.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

The big bang theory (made safe) — Impact insensitive dinitromethanide salts

The improvement of high energy density materials (HEDM) is an ongoing challenge. These materials are widely used in propellants, explosives, and pyrotechnics, and researchers face the difficult task of optimising their explosive potential while ensuring their safety and ease of handling. Nitro-substituted methanide compounds are an important class of HEDM, but often suffer from thermal instability and impact sensitivity. This HOT ChemComm article addresses this challenge by highlighting the preparation and analysis of impact insensitive dinitromethanide salts.

Jean’ne Shreeve at the University of Idaho, working with Ling He at Sichuan University and co-workers at the US Naval Research Laboratory, proposed that by combining an oxygen-rich polynitromethanide anion (either a nitroform anion TNM, or a dinitromethanide anion DNM) with nitrogen-rich cations such as guanidinium, triazolium and tetrazolium anions, the resulting salt would exhibit high energetic properties as well as improved stability.

Using a range of guanidinium, triazolium and tetrazolium halides, the researchers prepared nine DNM salts and analysed their physicochemical properties. All of the salts displayed good thermal and detonation properties while being significantly less sensitive to impact than common explosives such as 2,4,6-trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX).

Molecular structure and Packing diagram of DNM salt 3

Guanidinium–DNM salt 3, decomposing at 187 °C, displayed the best thermal stability among all other known DNM salts. X-ray crystallography revealed that this increased stability is due to its strongly hydrogen-bonded structure. Each guanidinium cation forms six hydrogen bonds with the NO2 groups of four surrounding anions, creating a planar, layered packing structure.

Insights such as these will allow researchers to design HEDM with better thermal stability and less impact sensitivity, controlling their energetic potential yet ensuring greater safety and utility.

For more, check out the ChemComm article in full:
Impact insensitive dinitromethanide salts
Ling He, Guo-Hong Tao, Damon A. Parrish, and Jean’ne M. Shreeve
Chem. Commun., 2013, Accepted Manuscript
DOI: 10.1039/C3CC46518G

Ruth E. Gilligan is a guest web-writer for ChemComm.  She has recently completed her PhD in the group of Prof. Matthew J. Gaunt at the University of Cambridge, focusing on the development and application of C–H functionalisation methodology.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Synthesis of non-toxic HSP90 inhibitors via Suzuki–Miyaura reaction

HSP90 (Heat Shock Protein 90) is a chaperone protein which is involved in the disease pathways of many cancers, and such neurodegenerative illnesses as Alzheimer’s and Parkinson’s disease.  The inhibition of HSP90 has gained a great deal of attention since its discovery, and offers the potential to treat many serious illnesses.  Much interest has focused on geldanamycin—a benzoquinone ansamycin which is highly effective in the inhibition of HSP90.  Unfortunately, geldanamycin suffers from high liver toxicity in addition to poor stability and solubility which greatly limits its therapeutic utility.

Christopher Moody at the University of Nottingham has devoted much research toward the targeting and inhibition of HSP90.  His group recently discovered that the 19-position plays a key role in geldanamycin’s toxicity, and that substitution at that position can render the compound non-toxic, through the suppression of conjugate addition reactions which are thought to be responsible for its hepatotoxicity.

While Moody previously utilized the Stille reaction for substitution at this position, the transformation was limited in cases, not scalable, and its industrial application was hampered by undesirable, toxic reagents and waste products.  In this Communication, Moody and Kitson overcome these problems by employing the Suzuki–Miyaura reaction to install functionality at the 19-position.  Using a modification of the Suzuki–Miyaura reaction previously described by Eli Lilly researchers, Moody was able to obtain functionalised geldanamycins in yields which compare well with or exceed those obtained by the Stille protocol.

Beginning with readily accessible 19-iodogeldanamycin (1), the cross-coupling reaction allows a range of substituents to be installed easily, using an array of widely available boronic acids and esters. Aryl-, vinyl- and allyl-groups could be installed with excellent yields, while the use of alkyl boronic acids and esters afforded moderate results. The electronic supplementary information contains full details of the reaction optimisation.

This method allows non-toxic 19-substituted-geldanamycins to be prepared efficiently and without the disadvantages associated with the previous Stille route.  Not only will this benefit the synthesis of geldanamycins within the pharmaceutical industry, but it should also encourage further clinical research of these important compounds.

For more, check out the ChemComm article in full:

An improved route to 19-substituted geldanamycins as novel Hsp90 inhibitors – potential therapeutics in cancer and neurodegeneration
Russell R. A. Kitson and Christopher J. Moody
Chem. Commun., 2013, Advance Article
DOI: 10.1039/C3CC43457E

Ruth E. Gilligan is a guest web-writer for ChemComm.  She has recently completed her PhD in the group of Prof. Matthew J. Gaunt at the University of Cambridge, focusing on the development and application of C–H functionalisation methodology.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Combating Influenza: Anthraquinone–Sialic Acid Hybrids for the Inhibition of Viral Neuraminidase

In the fight against influenza, viral neuraminidase (NA) represents an important target. This enzyme is essential for the replication of the virus, and its inhibition can prevent the spread of the disease. Scientists at Keio University have now identified a set of novel anthraquinone–sialic acid hybrids which can inhibit influenza virus neuraminidase with photo-irradiation under neutral conditions.

Anthraquinone derivatives were found to degrade proteins when subjected to photo-irradiation; this degradation is likely caused by hydroxy radicals which are produced from the photolysis of anthraquinone and oxygen. Crucially, researchers led by Prof. Kazunobu Toshima proposed that NA-inhibition could be obtained if such an anthraquinone derivative could be tethered to an NA-binding moiety. Sialic acid is a native ligand for NA— both “normal” NA and drug-resistant NA— and so researchers prepared and investigated a number of anthraquinone–sialic acid hybrids (1–3).

These hybrids were found to be effective for the inhibition of NA under photo-irradiation, and interestingly, showed comparable or superior results compared to the leading anti-NA drug, especially in the inhibition of drug-resistant NA. While further tests are ongoing, this research represents an important advance in influenza treatment, and offers great potential for the inhibition of other disease targets.

For more, read this ‘HOT’ ChemComm article in full:

Photodegradation and inhibition of drug-resistant influenza virus neuraminidase using anthraquinone–sialic acid hybrids

Yusuke Aoki,  Shuho Tanimoto,  Daisuke Takahashi and Kazunobu Toshima
Chem. Commun., 2013, 49, 1169–1171
DOI: 10.1039/C2CC38742E
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Novel silicon-mediated transannular cyclopropanation

An intriguing new method of transannular cyclopropanation has been reported by Prof. James Dowden‘s group at the University of Nottingham. This cyclopropanation, mediated by the presence of a trimethylsilyl group, allows the rapid formation of 4-azabicyclo(5.1.0)octenones (3) from simple starting materials. Divinyl beta-lactam (1) was elegantly formed via a Staudinger cycloaddition reaction beginning from 3-trimethylsilylpropenal, 4-methoxyaniline and crotonyl chloride. Next, researchers were able to transform 1 into dihydroazocinone (2) using a thermal Cope rearrangement.

The Dowden group discovered that if 2 was treated with TBAF or aqueous sodium hydroxide, 4-azabicyclo(5.1.0)octenone (3) could be formed. Interestingly, the reaction was dependent on the presence of the silicon group; when the trimethylsilyl group was replaced with an ester, no cyclopropanation occurred. The researchers proposed that the transannular cyclopropanation could be viewed as a Lewis-base–promoted Hosomi–Sakurai reaction proceeding via intramolecular 1,4-conjugate addition. 4-azabicyclo(5.1.0)octenones (3) are an unusual structural motif and it is hoped that this facile method for their construction may facilitate further examination of chemical space interactions.

Read this ‘HOT’ Chem Comm article today:

An unusual silicon mediated transannular cyclopropanation

Bing You,  Kate Hamer,  William Lewis and James Dowden
Chem. Commun., 2013, 49, 795-797
DOI: 10.1039/C2CC37739J
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

True racemic crystals: Surprising new insights on preparation and structure

Isopropyl 3,3,3-trifluoro-2-hydroxypropanoate (1) is an important compound for the study of self-disproportionation of enantiomers (SDE), in which an enantiomerically enriched mixture can be separated into enantiopure and racemic portions under achiral conditions. This remarkable separation is made possible by the differences in physicochemical properties of enantiopure and racemic substances. Research led by Professor Vadim A. Soloshonok at the University of the Basque Country has now shed light on the unusual properties of racemic crystals of 1.

True racemic crystals were obtained by sublimation of a mixture of (S)- and (R)- crystal conglomerates at ambient temperature and atmospheric pressure. Surprisingly, when these racemic crystals were analysed, the unit cell was not dimeric in nature as previously thought, but rather contained two distinct (S)- and (R)- enantiomers with no heterochiral H-bonding. The preference of 1 for homochiral intermolecular interactions may explain its extraordinary ability for SDE. Indeed, Soloshonok and co-workers showed that achiral chromatography could be used to obtain enantiopure 1 from an original sample with just 75% ee (see above).

For more, read this ‘HOT’ Chem Comm article today:

Unconventional preparation of racemic crystals of isopropyl 3,3,3-trifluoro-2-hydroxypropanoate and their unusual crystallographic structure: the ultimate preference for homochiral intermolecular interactions

José Luis Aceña, Alexander E. Sorochinsky, Toshimasa Katagiri and Vadim A. Soloshonok
Chem. Commun., 2013, 49, 373–375
DOI: 10.1039/c2cc37491a
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)