Author Archive

ChemComm’s 60th Anniversary – Koji Hirano

ChemComm is publishing its 60th volume in 2024. Over the past 60 years, ChemComm has been the RSC’s most cited journal, and one of the most trusted venues for rapid publication of short communications. In our anniversary year, we recognise the important contributions ChemComm has made, and continues to make, in advancing the chemical sciences.

As part of our anniversary celebrations, we’ve brought together a collection featuring the latest research from some of our most loyal and dedicated authors. From those marking the beginning of their independent academic career by publishing their first article with us, to the rising stars and established leaders publishing in our yearly ‘Emerging Investigators’ and ‘Pioneering Investigators’ collections, this collection champions the contributions of our worldwide author community. We are proud many authors choose to support our journal by regularly publishing their best work with us. This collection also features papers from our ChemComm Emerging Investigator Lectureship winners, and our Outstanding Reviewer awardees, whose invaluable feedback has shaped our published content through the years.

To accompany the collection, we’ll be publishing interviews with contributing authors where they provide further insight into their research and reflect on their journey with ChemComm.

Check out our interview with Professor Koji Hirano (Osaka University) below!

 

Koji Hirano studied chemistry at Kyoto University where he obtained his B. Eng. (2003), M. Eng. (2005), and Dr. Eng. (2008) degrees under the supervision of Professor Koichiro Oshima.  He subsequently worked as a postdoctoral fellow with Professor Tamio Hayashi at Kyoto University from April to September 2008.  He then joined the research group of Professor Masahiro Miura at Osaka University as an assistant professor in October 2008, and was promoted to an associate professor in April 2015 and a full professor in May 2022.

https://url.uk.m.mimecastprotect.com/s/mr91CJy9QSpPY8GHVlsf4?domain=www-chem.eng.osaka-u.ac.jp

 

What is your favourite thing about ChemComm?

Rapid but reliable review process and good circulation.

In what ways do you think ChemComm stands out among other journals in your field?

The rapid publication of newly obtained results is possible in the 4-page communication format.

How would you describe the peer review process and interaction with the editorial team at ChemComm?

All are very professional and highly valuable.  Interaction with the editorial team is also barrierless.

Are there ways in which the journal can further support and engage with future generations of scientists?

To encourage the next generation, the journal should promote and highlight young first authors, involving PhD course students.

Could you provide a brief summary of your recent ChemComm publication?

We focused on C-H activation of a phosphole nucleus, which is one of key heterocyclic cores in design and synthesis of functional molecules.
In this publication, the Pd-catalyzed regioselective C2-H alkynylation has been developed.  The obtained C2-alkynylated phospholes have unique alkyne-phosphole conjugations.  In addition, the alkyne can be a versatile synthetic handle for synthesis of more pi-conjugated phosphole derivatives.

In your opinion, what are the next steps or potential areas of research that could build upon the findings in this paper?

Synthesis and discovery of new organic functional materials based on phosphole nuclei.

 

Be sure to read Koji’s Open Access Communication, “Pd-catalysed C–H alkynylation of benzophospholes” to learn more!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm 60th Anniversary Board Member Collection – Jyotirmayee Dash

 

Chemical Communications will be publishing its 60th volume in 2024. Over the past 60 years, ChemComm has been the RSC’s most cited journal, and one of the most trusted venues for rapid publication of short communications. In our anniversary year, we recognise the important contributions ChemComm has made, and continues to make, in advancing the chemical sciences.

As part of these celebrations, we’ve brought together a special collection highlighting the latest work from the pioneering researchers who have supported the journal in reaching this milestone by serving on ChemComm’s Editorial and Advisory boards in the last two decades. Throughout the year, we’ll be catching up with these current and former Board Members to discuss their work and reflect on ChemComm’s 60th anniversary.

Check out our interview with current Advisory Board Member, Professor Jyotirmayee Dash below!

  Professor Jyotirmayee Dash earned her Ph.D. in Organic Chemistry from IIT Kanpur. Subsequently, she was awarded an Alexander von Humboldt fellowship at the Freie University of Berlin. She also held postdoctoral positions at ESPCI, Paris, and at the University of Cambridge, where she received a Marie Curie fellowship. She commenced her academic journey as an Assistant Professor at IISER Kolkata. Currently, she serves as a Professor at IACS Kolkata. Professor Dash has been recognized with DST-SwarnaJayanti, DBT/Wellcome Trust India Alliance Fellowships, as well as the Shanti Swarup Bhatnagar Prize. She leads a research group primarily focusing on synthetic organic chemistry tools for studying the structure and function of nucleic acids for therapeutic applications.

Webpage: https://www.iacs.res.in/athusers/index.php?navid=0&userid=IACS0034

Twitter/X: @DashLab1

What attracted you to the role as Advisory Board Member for ChemComm?

I was attracted to the role of Advisory Board Member for ChemComm because it’s known as a top journal for quickly publishing important scientific findings. Contributing my knowledge and experience to support this esteemed journal has been a long-standing interest of mine. Being in this role could also encourage more people in my community to read and submit their work to ChemComm.

How have you seen ChemComm evolve over the years, and what aspects do you find most noteworthy?

I have observed ChemComm evolve over the years, particularly in its publishing procedure. What stands out to me the most is its rapid yet thorough peer-review process, resulting in the publication of highly significant works presented in a concise and straightforward format. This approach is particularly beneficial for new researchers, as it allows them to access important knowledge and plan their projects effectively.

What is your favourite thing about ChemComm?

My favorite aspect of ChemComm, beyond its capability for rapid publication, is the diversity of chemical science topics it includes. Interdisciplinary research articles published in ChemComm serve as a valuable platform for researchers from various backgrounds to explore new avenues by bridging diverse fields within the chemical sciences. This diversity makes the journal highly appealing to individuals within different disciplines of the chemical science community, making it one of the most trusted and highly cited journals, publishing communications of significant scientific values.

In what ways do you think ChemComm stands out among other journals in your field?

The short format and rapid publication of urgent and impactful work make ChemComm a standout journal in Chemical Science, appealing not only to new researchers but to all researchers to share their significant findings efficiently. ChemComm’s feature articles highlight cutting-edge research across various disciplines within the chemical sciences. These articles often showcase significant advancements and impactful discoveries, making them valuable contributions to the scientific community.

Are there ways in which the journal can further support and engage with future generations of scientists?

ChemComm has already proven to be a wonderful platform, supporting the future generation of scientists. Moreover, fostering interactions between upcoming scientists and the editors through conferences or workshops will attract more researchers. This engagement may increase the likelihood of these researchers considering ChemComm as a preferred venue for publishing their research findings in the future.

Could you provide a brief summary of your recent ChemComm publication?

Our recent ChemComm publication highlights the use of a G-quartet-like supramolecular assembly within guanosine phenyl boronic acid hydrogel to facilitate macrocyclization between bis-azide and bis-alkyne fragments. This process enhances hydrogel properties and offers potential for in situ drug synthesis and delivery. We’ve shown that a nucleic acid-based hydrogel can enable in situ synthesis of macrocyclic ligands via click reactions, demonstrating the hydrogel’s versatility for challenging reactions and its potential for drug synthesis and delivery.

In your opinion, what are the next steps or potential areas of research that could build upon the findings in this paper?

Next steps or potential areas of research could involve design and development of bio-inspired pH responsive and thixotropic hydrogels, similar to the nucleoside derived hydrogel, as a platform for the direct synthesis of drugs from reactive fragments. These investigations could lead to simultaneous in situ synthesis and delivery of drugs at specific locations, offering promising prospects for targeted and efficient drug delivery systems.

 

Be sure to read Professor Dash’s recent communication – Guanosine-based hydrogel as a supramolecular scaffold for template-assisted macrocyclization by Binayak Lala, Ritapa Chaudhuri, Thumpati Prasanth, Ines Burkhart, Harald Schwalbe and Jyotirmayee Dash

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Arnaud Thevenon

We are excited to share the success of Arnaud Thevenon’s first-time independent article in ChemComm; “A π-extended β-diketiminate ligand via a templated Scholl approach included in the full milestones collection. 

Read our interview with Arnaud below.

What are the main areas of research in your lab and what motivated you to take this direction?

Catalysis is playing and will play an essential role in the energy, resource, and material transitions that our society is facing. In my research group, we aim at developing new concepts in thermo- / electro- / photo-chemical catalysis to contribute to these transitions. Our main research areas cover three topics: 1) exploring homogeneous molecular mimics of Single Atom Catalysts for the electrochemical conversion of small molecules; 2) developing new catalysts to convert waste and renewable feedstocks into polymers that are intrinsically circular by design; 3) creating new (electro/photochemical) post-polymerization modification methods to incorporate new functionalities into polymers.

Can you set this article in a wider context?

The discovery of Single Atom Catalysts (SACs) is one of the most exciting recent breakthroughs in the realm of (electro-)catalysis. Constituted of isolated, individual transition metal atoms dispersed on, and/or coordinated with, the surface of a heterogeneous support, SACs enable the reasonable use of abundant metal resources and facilitate atom economy. Nowadays, they are widely used to catalyze many thermo-, photo- and electrochemical reactions (e.g., small molecules conversion, biomass valorization). However, the development of SACs with higher performances (e.g., new selectivity profile, higher activity) is now facing a wall. The heterogeneity of their active sites precludes mechanistic studies and the understanding of the structure/activity/selectivity relationship remain obscure. More precisely, it is still unknown how the coordination environment of active sites and how support/active site interactions affect the final performance of a SAC during a chemical reaction. In this project, we aim at creating molecular models of active sites of SAC and investigate their reactivity in presence of small molecules such as CO2 to shed light on the synergy between the extended 𝛑-system and the metal center during catalysis.

What do you hope your lab can achieve in the coming year?

In the coming year, I hope we will make good progress in investigating/understanding the reactivity of first row transition metals coordinated to our benzo[f,g]tetracene BDI ligand in presence of various small molecules under reductive conditions.

Describe your journey to becoming an independent researcher.

My journey to becoming an independent researcher started at EPFL. During my undergraduate studies, I worked with Prof. Gabor Laurenczy on the Ru-catalyzed decomposition of formic acid. I then had the chance to conduct my Master thesis in the group of Prof. Paula Diaconescu, at UCLA, on redox-active catalysts for the polymerization of cyclic lactones. I subsequently moved to the University of Oxford, in the group of Prof. Charlotte K. Williams, where I obtained my PhD on the development of main group catalysts for the synthesis of oxygenated polymers. After completion of my PhD in 2018, I joined the group of Prof. Theodor Agapie at Caltech as a Marie Skłodowska-Curie fellow. My research focused on the development of hybrid heterogeneous Cu electrodes for the electroconversion of CO2-to-fuels. At the end of 2020, I moved back to Europe to complete my Marie Skłodowska-Curie fellowship in the group of Prof. Stefan Mecking, at the University of Konstanz, where I worked on the development of catalysts for olefin polymerization. Since August 2021, I joined the Organic Chemistry and Catalysis group as an assistant professor.

What is the best piece of advice you have ever been given?

At the start of my PhD degree, I received a birthday card from my daily supervisor, Dr. Jennifer Garden, with a quote: “Nullum magnum ingenium sine mixtura dementiae fuit”, attributed to Seneca. I console myself with that quote every time I come up with the next (unrealistic) Friday afternoon experiment to try!

Why did you choose to publish in ChemComm?

I chose to publish in ChemComm due to its high visibility and reputation within the scientific community.

  Arnaud Thevenon is an Assistant Professor at Utrecht University. He received his PhD (2018) from the University of Oxford under the supervision of Prof. Charlotte K. Williams. He was a Marie Skłodowska-Curie postdoctoral researcher at Caltech (2018-2021) in the group of Prof. Theodor Agapie and the University of Konstanz (2021) in the group of Prof. Stefan Mecking before joining Utrecht University in 2021. His research interest includes the development of homogeneous thermo/electrocatalysts for small molecules, biomass, and waste (plastic) valorization as well as the development of novel polymers that are intrinsically circular by design.

Explore more ChemComm Milestones news and updates on our X Feed (@ChemCommun) and LinkedIn (ChemComm Journal)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm’s 60th Anniversary – Thimmaiah Govindaraju

ChemComm is publishing its 60th volume in 2024. Over the past 60 years, ChemComm has been the RSC’s most cited journal, and one of the most trusted venues for rapid publication of short communications. In our anniversary year, we recognise the important contributions ChemComm has made, and continues to make, in advancing the chemical sciences.

As part of our anniversary celebrations, we’ve brought together a collection featuring the latest research from some of our most loyal and dedicated authors. From those marking the beginning of their independent academic career by publishing their first article with us, to the rising stars and established leaders publishing in our yearly ‘Emerging Investigators’ and ‘Pioneering Investigators’ collections, this collection champions the contributions of our worldwide author community. We are proud many authors choose to support our journal by regularly publishing their best work with us. This collection also features papers from our ChemComm Emerging Investigator Lectureship winners, and our Outstanding Reviewer awardees, whose invaluable feedback has shaped our published content through the years.

To accompany the collection, we’ll be publishing interviews with contributing authors where they provide further insight into their research and reflect on their journey with ChemComm.

Check out our interview with Professor Thimmaiah Govindaraju (Jawaharlal Nehru Centre for Advanced Scientific Research) below!

 

Thimmaiah Govindaraju is a Professor at the Bioorganic Chemistry Laboratory, New Chemistry Unit, JNCASR, Bengaluru, Karnataka, India. He received his M.Sc. from Bangalore University and PhD in Chemistry from the National Chemical Laboratory and University of Pune, India. He carried out postdoctoral research at the University of Wisconsin-Madison, USA and the Max Planck Institute of Molecular Physiology, Dortmund, Germany as an Alexander von Humboldt postdoctoral fellow. His research interests are at the interface of chemistry, biology, and biomaterials science, including Alzheimer’s disease, peptide chemistry, molecular probes, theranostics, molecular architectonics, and silk and cyclic dipeptide derived biomimetics.

 

How have you seen ChemComm evolve over the years, and what aspects do you find most noteworthy?

Over the past 60 years, ChemComm has evolved into a premier journal for publishing pioneering research in chemistry and related fields, in the form of short communications. Its transformation is highlighted by the inclusion of feature articles, two to four page communication format and inclusivity. ChemComm is aptly celebrating its 60th anniversary as a milestone of excellence.

What is your favourite thing about ChemComm?

ChemComm’s broad appeal across multiple disciplines at the chemistry interface is particularly noteworthy. Since my initial publication in 2004, I have consistently contributed to the journal, valuing its wide-reaching impact.

In what ways do you think ChemComm stands out among other journals in your field?

ChemComm stands out as a leading journal for the expedited publication of urgent and innovative studies. It has cemented its position as a top-tier journal for original, high-quality research communications.

How would you describe the peer review process and interaction with the editorial team at ChemComm?

The peer review process at ChemComm is notably smooth, swift, and author-centric. The journal’s commitment to a transparent and double-anonymized review system, along with the unique option for authors to choose between associate editor or editorial office manuscript handling, is commendable.

Are there ways in which the journal can further support and engage with future generations of scientists?

ChemComm actively supports both emerging and established authors through special issues and awards. However, there is a continuous need to engage with and inspire future generations of chemists, emphasizing the excitement of chemical research and its societal relevance.

Could you provide a brief summary of your recent ChemComm publication?

Our recent ChemComm publication as part of ChemComm 60th Anniversary collection, explores the modulation of tau protein liquid-liquid phase transition (LLPS), which is crucial for both normal physiological functions and pathological aggregations such as Alzheimer’s disease and other tauopathies. Our findings suggest that small polyphenolic compounds can modulate tau phase transitions, potentially offering a new therapeutic approach for neurodegenerative diseases.

In your opinion, what are the next steps or potential areas of research that could build upon the findings in this paper?

Building upon our findings, future research should delve deeper into the role of phase transitions of proteins in normal and pathological processes, with a focus on developing treatments for neurodegenerative diseases using small phenolic or polyphenolic compounds. The potential of targeting phase transition pathways in disease treatment is an exciting and underexplored area.

 

Be sure to read the Communication, “Biphasic modulation of tau liquid–liquid phase separation by polyphenols” to learn more!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm’s 60th Anniversary – Chen Zhu

ChemComm is publishing its 60th volume in 2024. Over the past 60 years, ChemComm has been the RSC’s most cited journal, and one of the most trusted venues for rapid publication of short communications. In our anniversary year, we recognise the important contributions ChemComm has made, and continues to make, in advancing the chemical sciences.

As part of our anniversary celebrations, we’ve brought together a collection featuring the latest research from some of our most loyal and dedicated authors. From those marking the beginning of their independent academic career by publishing their first article with us, to the rising stars and established leaders publishing in our yearly ‘Emerging Investigators’ and ‘Pioneering Investigators’ collections, this collection champions the contributions of our worldwide author community. We are proud many authors choose to support our journal by regularly publishing their best work with us. This collection also features papers from our ChemComm Emerging Investigator Lectureship winners, and our Outstanding Reviewer awardees, whose invaluable feedback has shaped our published content through the years.

To accompany the collection, we’ll be publishing interviews with contributing authors where they provide further insight into their research and reflect on their journey with ChemComm.

Check out our interview with Professor Chen Zhu (Shanghai Jiao Tong University) below!

 

  Chen Zhu received a BS degree from Xiamen University in 2003, and a PhD degree from Shanghai Institute of Organic Chemistry in 2008 under the supervision of Prof. Guo-Qiang Lin. After postdoctoral research in Gakushuin University, Japan with Prof. Takahiko Akiyama, he moved to the University of Texas Southwestern Medical Center, working with Prof. John R. Falck and Prof. Chuo Chen as postdoctoral fellow. He was appointed as full professor at Soochow University in Dec. 2013, and joined Shanghai Jiao Tong University in July 2022. His research interests include radical-mediated transformations and the applications in the construction of biologically active compounds and polymers.

 

What is your favourite thing about ChemComm?

Rapid publication, interdisciplinary fields, broad readership and high visibility

Could you provide a brief summary of your recent ChemComm publication?

The work describes an unusual Z-selective radical difunctionalization of aromatic alkynes by the strategy of functional group migration,leading to a range of valuable triarylethenes. A novel spin-trapping reagent is developed based on the synthesized product.

In your opinion, what are the next steps or potential areas of research that could build upon the findings in this paper?

More challenging transformations in radical chemistry could be solved with the inspiration of functional group migration.In addition,valuable molecules such as bioactive compounds,organic optoelectronic materials,and spin-trapping reagents could be developed based on the triarylethene products.

 

Be sure to read Chen’s Communication, “Z-selective radical difunctionalization of aromatic alkynes: synthesis of multi-substituted triarylethenes” to learn more!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Showkat Rashid

We are excited to share the success of Showkat Rashid’s first-time independent article in ChemComm; “Chemoselective oxidation of aromatic aldehydes to carboxylic acids: potassium tert-butoxide as an anomalous source of oxygen included in the full milestones collection. 

Read our interview with Showkat below.

What are the main areas of research in your lab and what motivated you to take this direction?

Our lab is primarily focused on the synthesis of bioactive natural products having therapeutic potential against diseases like Alzheimer’s disease and AMR. Additionally, scalable synthesis of drugs/drug-like molecules, and the development of novel methodologies for building complexities are also pursued in our lab. During my high school days, I got the opportunity to watch some chemical reactions carried out by our science teacher which was highly fascinating to me. The impact of that exposure at the school level was so deep and I used to make crude soap from cooking oil and caustic soda at home. This interest in chemical reactions remained throughout my academic journey and motivated me to be an organic chemist.

Can you set this article in a wider context?

Carboxylic acids and their derivatives like esters, amides, and anhydrides represent quintessential building blocks for pharmaceutical, agrochemical, and polymer industries. The main chemical transformation to access carboxylic acids is the oxidation of corresponding aldehydes and these oxidations have been primarily implemented using stoichiometric amounts of various metal-based oxidants. Considering their serious toxicity issues, nascent H2O2 oxidations,
organocatalytic oxidations, and NHC-based oxidations have also emerged. Despite their promise, these methods suffer several limitations in terms of high catalyst loading, longer reaction times, limited substrate scope, and operational complexities.

Most of these reported methods utilize diverse primary or secondary oxidants (as oxygen sources) and proceed through Criegee intermediate which is difficult to handle, especially at an industrial scale. Any oxidation strategy that averts such an intermediate is highly desired. In this context, we have disclosed an unprecedented potassium tert-butoxide-mediated oxidation protocol for the conversion of aromatic/heteroaromatic aldehydes to their corresponding carboxylic acids. Interestingly, this method uses KOtBu as an oxygen source, and can easily oxidize a range of aldehydes to carboxylic acids under ambient conditions. The extraordinary chemoselectivity displayed by this method to oxidize a relatively less preferred functional group in the presence of more oxidation-prone functional group/s highlights the advantage of this protocol over the methods reported so far. Operational simplicity, fast reaction kinetics, fair substrate scope, and gram-scale operations are some of the highlights of this method.

What do you hope your lab can achieve in the coming year?

In the coming year, we are committed to exploring novel strategies for assembling complex natural products and drug-like molecules. New reactions involving a high level of selectivity and economy will be our prime focus.

Describe your journey to becoming an independent researcher.

Formally my research career started with the M. Phil degree enrolled at the University of Kashmir-Srinagar and I was fortunate enough to have worked with Dr. Bilal A. Bhat at the CSIR-IIIM Srinagar. My initial training was in medicinal chemistry and, exploration of plant-derived bioactive compounds against cancer. Subsequently, I joined Dr. Bhat for my doctoral studies and worked on a collaborative research project between Dr. Bhat and Prof. Goverdhan Mehta in the area of Natural product synthesis at the University of Hyderabad. During this time, I got trained in multistep synthesis and eventually completed the total synthesis of several complex bioactive natural/non-natural compounds. After completing my doctoral studies in 2019, I did my initial postdoctoral training with Prof. Mehta at the University of Hyderabad, and later in 2020 moved to Prof. Shinichi Saito’s research group at Tokyo University of Science-Japan, wherein my research was oriented toward the design and synthesis of rotaxane based molecular machines. My journey to an independent researcher began in 2022 when I joined the Natural Product and Medicinal Chemistry Division (NPMCD) of IIIM Jammu as a senior scientist and my present research interests are centered on the synthesis of bioactive natural products of medicinal importance and development of new organic transformations.

What is the best piece of advice you have ever been given?

Both of my Ph.D. supervisors, Dr. Bhat and Prof. Mehta trained me to be more realistic in life. Their advice used to be “There is no free lunch in life” and “It is always better to have one bird in the hand than two in the bush”.

Why did you choose to publish in ChemComm?

I believe that ChemComm is one of the highly reputed chemistry journals with a wide readership across all the disciplines of chemical science. In addition to being a competitive platform for novel and application-oriented research findings, the highly systematic and robust nature in terms of publishing these ideas are some of the factors that attracted me to publish in ChemComm.

  Dr. Showkat Rashid is currently working as a senior scientist at CSIR-Indian Institute of Integrative Medicine (IIIM) Jammu-India. He pursued his Bachelor of Science, Master of Science, and M.Phil. in chemistry from the University of Kashmir, Srinagar. Subsequently, he joined Dr. Bilal A. Bhat (Principal Scientist, IIIM-Srinagar) for his Ph.D. program and worked under a collaborative research project between Dr. Bhat and Prof. Goverdhan Mehta in the area of Natural product synthesis. His doctoral research encompassed diverse areas of contemporary interest in synthetic organic and medicinal chemistry.
After completing his doctoral studies in 2019, Dr. Showkat did his initial postdoctoral training with Prof. Goverdhan Mehta at the University of Hyderabad, with a prime focus on the synthesis of complex bioactive natural products and molecules of human imagination. Later on, in 2020 he moved to Prof. Shinichi Saito’s research group at Tokyo University of Science-Japan, wherein his research was oriented towards the design and synthesis of molecular machines. These studies eventually led to the synthesis of novel fluorenone-based [2]-rotaxanes with potential applications as smart drug delivery systems. While in Japan, Dr. Showkat was awarded the prestigious start-up research grant by the Japan Society for the Promotion of Science (JSPS), Japan for the year 2022-2023.
At CSIR-IIIM Jammu, Dr. Showkat’s research interests are tuned towards the total synthesis of bioactive natural products/drugs, new methods for building complexity, and multistep synthesis of biologically privileged scaffolds having the potential to combat Alzheimer’s disease and antimicrobial resistance.

Explore more ChemComm Milestones news and updates on our X Feed (@ChemCommun) and LinkedIn (ChemComm Journal)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm’s 60th Anniversary – Arturo Jiménez-Sánchez

ChemComm is publishing its 60th volume in 2024. Over the past 60 years, ChemComm has been the RSC’s most cited journal, and one of the most trusted venues for rapid publication of short communications. In our anniversary year, we recognise the important contributions ChemComm has made, and continues to make, in advancing the chemical sciences.

As part of our anniversary celebrations, we’ve brought together a collection featuring the latest research from some of our most loyal and dedicated authors. From those marking the beginning of their independent academic career by publishing their first article with us, to the rising stars and established leaders publishing in our yearly ‘Emerging Investigators’ and ‘Pioneering Investigators’ collections, this collection champions the contributions of our worldwide author community. We are proud many authors choose to support our journal by regularly publishing their best work with us. This collection also features papers from our ChemComm Emerging Investigator Lectureship winners, and our Outstanding Reviewer awardees, whose invaluable feedback has shaped our published content through the years.

To accompany the collection, we’ll be publishing interviews with contributing authors where they provide further insight into their research and reflect on their journey with ChemComm.

Check out our interview with Arturo Jiménez-Sánchez (Universidad Nacional Autónoma de México) below!

  Arturo Jiménez-Sánchez, a Principal Investigator at the Institute of Chemistry, UNAM, Mexico City, holds a Chemical Engineering degree and a PhD in Chemistry from Cinvestav, Mexico City. He completed postdoctoral fellowships at the Faculty of Chemistry-UNAM with Prof. Anatoly Yatsimirsky and at the University of Toronto with Prof. Shana Kelley. Additionally, he conducted research stays at ENS-Cachan in Paris and LCC in Toulouse, France. His research centers on innovating bioanalytical protocols for assessing subcellular chemical interactions using fluorophore chemistry.

 

How have you seen ChemComm evolve over the years, and what aspects do you find most noteworthy?

ChemComm has evolved into a premier platform for rapid dissemination of cutting-edge research in chemistry. Its transition to online publishing and adoption of open access options have been particularly noteworthy, facilitating global accessibility and collaboration among researchers.

What is your favourite thing about ChemComm?

My favorite aspect of ChemComm is its commitment to publishing high-impact research across all areas of chemistry. The journal’s dedication to maintaining rigorous standards while ensuring rapid publication is commendable.

In what ways do you think ChemComm stands out among other journals in your field?

ChemComm distinguishes itself through its rapid publication times, broad scope covering all sub-disciplines of chemistry, and its reputation for publishing groundbreaking research. Additionally, its strong editorial team ensures fair and rigorous peer review, maintaining the journal’s high quality standards.

How would you describe the peer review process and interaction with the editorial team at ChemComm?

The peer review process at ChemComm is thorough and efficient. The editorial team provides constructive feedback and maintains clear communication throughout the review process. Their professionalism and dedication contribute to the overall positive experience of publishing in the journal.

Are there ways in which the journal can further support and engage with future generations of scientists?

To further support and engage future generations of scientists, ChemComm could consider initiatives such as mentorship programs, early career researcher forums, and highlighting diverse voices in chemistry through special thematic issues or features.

Could you provide a brief summary of your recent ChemComm publication?

Our recent publication in ChemComm titled “Exploring Mitochondrial Targeting: Innovative Fluorescent Probe Reveals Nernstian Potential and Partitioning Combination” introduces a groundbreaking method for optimizing mitochondrial targeting. Using a novel fluorescent probe strategy, the study reveals the combined impact of Nernst potential (W) and partitioning (P) contributions. By synthesizing new benz[e]indolinium-derived probes, the research redefines the landscape of mitochondrial localization, enhancing the retention of mitochondrial probes in primary cortical neurons under normoxia and oxygen-glucose deprivation conditions. This methodology not only deepens our comprehension of subcellular dynamics but also offers transformative potential for biomedical research and therapeutic development.

In your opinion, what are the next steps or potential areas of research that could build upon the findings in this paper?

In my opinion, the findings in this paper lay a solid foundation for several potential avenues of future research. One promising direction could involve further optimization and refinement of fluorescent probes that are not meant to exhibit pyrene-type excimer formation. Furthermore, investigating the mechanistic underpinnings of the observed effects on mitochondrial localization could uncover novel molecular pathways and cellular processes involved in subcellular dynamics. Finally, investigating the potential of novel mechanisms for targeting organelles using small molecule probes that are independent of membrane potential, such as targeting lysosomes to circumvent lysosomotropic effects (pH imbalance).

 

Be sure to read Arturo’s Communication, “Exploring mitochondrial targeting: an innovative fluorescent probe reveals Nernstian potential and partitioning combination” to learn more!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm’s 60th Anniversary – Saurabh Chitnis

ChemComm is publishing its 60th volume in 2024. Over the past 60 years, ChemComm has been the RSC’s most cited journal, and one of the most trusted venues for rapid publication of short communications. In our anniversary year, we recognise the important contributions ChemComm has made, and continues to make, in advancing the chemical sciences.

As part of our anniversary celebrations, we’ve brought together a collection featuring the latest research from some of our most loyal and dedicated authors. From those marking the beginning of their independent academic career by publishing their first article with us, to the rising stars and established leaders publishing in our yearly ‘Emerging Investigators’ and ‘Pioneering Investigators’ collections, this collection champions the contributions of our worldwide author community. We are proud many authors choose to support our journal by regularly publishing their best work with us. This collection also features papers from our ChemComm Emerging Investigator Lectureship winners, and our Outstanding Reviewer awardees, whose invaluable feedback has shaped our published content through the years.

To accompany the collection, we’ll be publishing interviews with contributing authors where they provide further insight into their research and reflect on their journey with ChemComm.

Check out our interview with Saurabh Chitnis (Dalhousie University) below!

    Saurabh Chitnis obtained his PhD with Neil Burford at the University of Victoria (2015) as an NSERC and Vanier Canada Graduate Scholar, where his doctoral thesis was recognized with a Governor General’s Gold Medal. He then performed postdoctoral research with Ian Manners at the University of Bristol as a Banting Postdoctoral Fellow (2015-2017) and later with Doug Stephan at the University of Toronto (2017-2018). He started his independent career in main group chemistry at Dalhousie University in July 2018, where in 2023 he received tenure and was promoted to Associate Professor. He has been profiled in Chemical Communications as an Emerging Investigators (2020) and in Dalton Transaction as a New Talents (2020). More recently, he recieved the Dalhousie Faculty of Science Killam Prize (2023), the CNC-IUPAC Travel Award (2023), and the Alfred P. Sloan Fellowship (2023). In his free time, Saurabh enjoys exploring the coastline of Atlantic Canada with his partner and pretending that he is a master chef, despite evidence to the contrary.

 

How have you seen ChemComm evolve over the years, and what aspects do you find most noteworthy?

ChemComm has consistently kept up with the latest developments in the publishing and peer review process, whether it be adopting double-anonymized review, or permitting pre-prints, ChemComm, along with other RSC journals, is continually pushing the community towards better and faster publication practices.

What is your favourite thing about ChemComm?

The fast review process and wide range of expertise represented on the editorial board.

In what ways do you think ChemComm stands out among other journals in your field?

ChemComm really stands out because it has the word “communications” directly in its name. At a time when most journals expect researches to cram in as much as possible in each article to meet the bar for significance and novelty and reviewer demands, ChemComm’s focus on the communication format reminds reviewers and editors that brief and accurate descriptions of impactful science are more valuable to the community than (often unnecessarily) lengthy articles where it can be difficult to find the most important parts quickly.

How would you describe the peer review process and interaction with the editorial team at ChemComm?

Excellent!

Are there ways in which the journal can further support and engage with future generations of scientists?

I was fortunate to have a cover selected for one of my early papers. This provided higher visibility for work at a critical stage. The cost of the cover was quite high and while I was able to secure funds, I think early career researchers should not be charged for covers.

Could you provide a brief summary of your recent ChemComm publication?

We showed that the phosphine-azide Staudinger reaction can be used to make phosphorus-nitrogen cages that can be subsequently used to assemble crystalline metal-inorganic frameworks, or amorphous networks that show solvent and gas porosity. This represents a major step in our exploration of how hard and soft matter with differing long-range order can be accessed from simple phosphorus-nitrogen cages and reliable reactions.

In your opinion, what are the next steps or potential areas of research that could build upon the findings in this paper?

While this research dealt with the synthesis of crystalline or amorphous networks starting with phosphorus-nitrogen cages, we believe that linear polymers could also be accessed, diversifying the family of macromolecules accessible form the same basis set of PN cages and reliable Staudinger reaction. One of the key molecules in the paper, a rigid 3-dimensional di-carboxyllic acid is also being used for assembling new classes of functional porous materials.

 

Be sure to read Saurabh’s Communication, “Rigid PN cages as 3-dimensional building blocks for crystalline or amorphous networked materials” to learn more!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm’s 60th Anniversary – Yang Yang

ChemComm is publishing its 60th volume in 2024. Over the past 60 years, ChemComm has been the RSC’s most cited journal, and one of the most trusted venues for rapid publication of short communications. In our anniversary year, we recognise the important contributions ChemComm has made, and continues to make, in advancing the chemical sciences.

As part of our anniversary celebrations, we’ve brought together a collection featuring the latest research from some of our most loyal and dedicated authors. From those marking the beginning of their independent academic career by publishing their first article with us, to the rising stars and established leaders publishing in our yearly ‘Emerging Investigators’ and ‘Pioneering Investigators’ collections, this collection champions the contributions of our worldwide author community. We are proud many authors choose to support our journal by regularly publishing their best work with us. This collection also features papers from our ChemComm Emerging Investigator Lectureship winners, and our Outstanding Reviewer awardees, whose invaluable feedback has shaped our published content through the years.

To accompany the collection, we’ll be publishing interviews with contributing authors where they provide further insight into their research and reflect on their journey with ChemComm.

Check out our interview with Yang Yang (University of Central Florida) below!

    Prof. Yang Yang studied energy conversion & storage and obtained his Ph.D. from Tsinghua University in 2010. From 2010 to 2012 he was supported by the Alexander von Humboldt Postdoctoral Fellowship and worked on solar energy harvesting and energy storage materials at the University of Erlangen-Nuremberg, Germany. From 2012 to 2015 he was supported by the Peter M. & Ruth L. Nicholas Postdoctoral Fellowship and worked on battery and catalysis at the Richard E. Smalley Institute for Nanoscale Sci. & Tech., Rice University. Since 2015 he has been a principal investigator at the University of Central Florida. His research focuses on materials chemistry and electrochemistry at the nanoscale solid-gas-liquid interfaces for clean energy generation and storage, electrification, and decarbonization applications. He has been dedicated to resolving the challenges in many emerging areas, including but not limited to energy, sustainability, environmental issues, agriculture, artificial intelligence, and so forth. His research effort has made a significant impact on the environmentally benign nanomanufacturing of functional materials for green catalysis, clean energy conversion, and renewable energy storage. He has made many seminal breakthroughs in understanding the materials chemistry and interface engineering of new materials. His significant contributions to the communities have been demonstrated by publishing more than 140 peer-reviewed research articles, including Nature Energy, Nature Communications, Nature Reviews Chemistry, Chemical Reviews, etc.

 

How have you seen ChemComm evolve over the years, and what aspects do you find most noteworthy?

My first ChemComm paper was published almost 13 years ago in 2011 when I was a postdoc and till now I have published 7 articles in ChemComm. I do see a steady growth of this journal.

What is your favourite thing about ChemComm?

I changed my research directions slightly over the years but I can always submit my manuscripts to ChemComm. Because the journal covers almost all areas of chemistry-related energy and sustainability.

In what ways do you think ChemComm stands out among other journals in your field?

The editorial handling time and peer-review process are pretty quick to publish very important articles that may change the fields

How would you describe the peer review process and interaction with the editorial team at ChemComm?

The reviewers always gave us very professional and in-depth suggestions to improve the manuscripts. The whole reviewing process is fantastic.

Are there ways in which the journal can further support and engage with future generations of scientists?

Organize or sponsor conferences, hold workshops or seminars, and have campus visits to universities.

Could you provide a brief summary of your recent ChemComm publication?

My most recent review article published in ChemComm gave a comprehensive overview of the research progress in the electrosynthesis of H2O2 via a two-electron oxygen reduction reaction.

In your opinion, what are the next steps or potential areas of research that could build upon the findings in this paper?

H2O2 is a very important industrial chemical. My next step will be to consider developing a method that combines H2O2 production with energy storage and conversion.

 

Be sure to read Yang’s Highlight article, “Recent advances in electrosynthesis of H2O2via two-electron oxygen reduction reaction” to learn more!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm’s 60th Anniversary – Ashlee Howarth

ChemComm is publishing its 60th volume in 2024. Over the past 60 years, ChemComm has been the RSC’s most cited journal, and one of the most trusted venues for rapid publication of short communications. In our anniversary year, we recognise the important contributions ChemComm has made, and continues to make, in advancing the chemical sciences.

As part of our anniversary celebrations, we’ve brought together a collection featuring the latest research from some of our most loyal and dedicated authors. From those marking the beginning of their independent academic career by publishing their first article with us, to the rising stars and established leaders publishing in our yearly ‘Emerging Investigators’ and ‘Pioneering Investigators’ collections, this collection champions the contributions of our worldwide author community. We are proud many authors choose to support our journal by regularly publishing their best work with us. This collection also features papers from our ChemComm Emerging Investigator Lectureship winners, and our Outstanding Reviewer awardees, whose invaluable feedback has shaped our published content through the years.

To accompany the collection, we’ll be publishing interviews with contributing authors where they provide further insight into their research and reflect on their journey with ChemComm.

Check out our interview with Ashlee Howarth (Concordia University) below!

  Ashlee J. Howarth is an Associate Professor and Concordia University Research Chair at Concordia University in Montréal. She was born and raised in London, Ontario. She obtained her undergraduate degree from the University of Western Ontario in 2009, and then went on to do her PhD in inorganic materials chemistry at the University of British Columbia under the supervision of Michael O. Wolf. Before joining the faculty at Concordia, she completed an NSERC Postdoctoral Fellowship at Northwestern University with Joseph T. Hupp and Omar K. Farha. At Concordia, the Howarth group is focused on the design and synthesis of rare-earth cluster-based metal–organic frameworks targeting applications in pollution remediation, catalysis, drug delivery, X-ray detection, and chemical sensing.

 

What is your favourite thing about ChemComm?

My favourite thing about ChemComm is the communication format. I prefer reading short and high impact communications and I also prefer writing that style of manuscript. This also goes hand-in-hand with the fast review process at ChemComm, which is a bonus!

In what ways do you think ChemComm stands out among other journals in your field?

ChemComm has a strong reputation in the field of chemistry that has lasted many years. I remember researchers being very excited to publish in ChemComm when I was a graduate student, and that is still the case today 10-15 years later. ChemComm will always have name brand recognition in the field.

How would you describe the peer review process and interaction with the editorial team at ChemComm?

The editors at ChemComm are always very fair and professional. I often receive very useful comments from reviewers at ChemComm too, comments that are critical but fair and make our manuscript better.

Are there ways in which the journal can further support and engage with future generations of scientists?

I think ChemComm is already doing a great job of this with their “emerging investigator” special issues, and blog/social media posts when researchers publish their first article in ChemComm. Perhaps another way to engage with future generations would be to also feature senior PhD students and postdocs who are publishing their work in ChemComm. A special issue or blog/social media post for emerging researchers that are not fully independent yet.

Could you provide a brief summary of your recent ChemComm publication?

In our most recent ChemComm publication, we show that rare-earth acetates can be used as precursors for the synthesis of rare-earth cluster-based metal–organic frameworks (MOFs). Traditionally, rare-earth nitrate precursors are used to make these MOFs, but it’s important to explore alternatives that are safer but also easier to handle (nitrates are very hygroscopic).

 

Be sure to read Ashlee’s Communication article, “Rare-earth acetates as alternative precursors for rare-earth cluster-based metal–organic frameworks” to learn more!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)