ChemComm is publishing its 60th volume in 2024. Over the past 60 years, ChemComm has been the RSC’s most cited journal, and one of the most trusted venues for rapid publication of short communications. In our anniversary year, we recognise the important contributions ChemComm has made, and continues to make, in advancing the chemical sciences.
As part of our anniversary celebrations, we’ve brought together a collection featuring the latest research from some of our most loyal and dedicated authors. From those marking the beginning of their independent academic career by publishing their first article with us, to the rising stars and established leaders publishing in our yearly ‘Emerging Investigators’ and ‘Pioneering Investigators’ collections, this collection champions the contributions of our worldwide author community. We are proud many authors choose to support our journal by regularly publishing their best work with us. This collection also features papers from our ChemComm Emerging Investigator Lectureship winners, and our Outstanding Reviewer awardees, whose invaluable feedback has shaped our published content through the years.
To accompany the collection, we’ll be publishing interviews with contributing authors where they provide further insight into their research and reflect on their journey with ChemComm.
Check out our interview with Dr Artur Kasprzak (Warsaw University of Technology, Poland) below!
How have you seen ChemComm evolve over the years, and what aspects do you find most noteworthy?
In my opinion, over the years ChemComm has grown into a leading and very prestigious general chemistry journal. For me, in ChemComm you can read about current significant research works from the world’s leading research groups. It is also a great journal for young research group leaders to publish their work in top-quality journal. It is indeed an exciting feeling to see your work published in ChemComm alongside works of well-recognized top specialists in the field!
What is your favourite thing about ChemComm?
ChemComm it is the journal where you can find lots of good quality papers from different areas of chemistry, from both young researchers and well-recognized scientists, describing brilliant scientific ideas and well-executed research.
In what ways do you think ChemComm stands out among other journals in your field?
Very fast publication times of communication-type manuscripts of high significance and prominent quality.
How would you describe the peer review process and interaction with the editorial team at ChemComm?
I always find the peer review process at ChemComm fair with the professional opinions of Reviewers. The process is also very fast, which is beneficial in terms of publishing in a relatively short time the research results with prospective high impact in the future.
Are there ways in which the journal can further support and engage with future generations of scientists?
I think, continuous promotion of new faces in the chemical society, such as young group leaders to boost their careers.
Could you provide a brief summary of your recent ChemComm publication?
My group is currently working on the design of new polyaromatic derivatives, including bowl-shaped molecules, for molecular recognition purposes, mainly in terms of the design of electrochemical and optical sensors of ions. Together with Marcin (Dr. Marcin Lindner, Polish Academy of Sciences, Institute of Organic Chemistry) we envisioned that the N-doped and bowl-shaped polycyclic aromatic hydrocarbons synthesized in his laboratory could serve as a new class of molecular receptors toward the recognition of cations. In this communication, we presented the results of our electrochemical, spectroscopic and computational studies on cation-p interactions between these exciting molecules and selected metal cations, toward the design of new class of molecular receptors for potentiometric and optical sensors.
In your opinion, what are the next steps or potential areas of research that could build upon the findings in this paper?
I believe this paper opens new avenues in yet unexplored areas of application of N-doped and bowl-shaped nanographenes. According to our studies, the molecular recognition process with the inclusion of such molecules and cationic species could be tracked both electrochemically and spectroscopically. I imagine the possibilities of using other techniques for tracking such interactions in terms of applied sciences of bowl-shaped molecules. There are also many exciting nanographenes and/or analytes that could be potentially used in future studies in such area.
Be sure to read Artur’s Open Access communication, “Metal cations recognition by bowl-shaped N-pyrrolic polycyclic aromatic hydrocarbons” to learn more!