Archive for April, 2024

ChemComm Milestones – Abhijit Sau

We are excited to share the success of Abhijit Sau’s first-time independent article in ChemComm; “Deoxyfluorinated amidation and esterification of carboxylic acid by pyridinesulfonyl fluoride included in the full milestones collection. 

Read our interview with Abhijit below.

What are the main areas of research in your lab and what motivated you to take this direction?

Primary focus of our lab lies in designing and synthesis of biologically active molecules of medicinal interest. We desire to explore catalysis and mechanisms in depth to extend the present understanding in the organic reaction. Currently, our goal is to develop efficient methodologies for stereoselective synthesis of small molecules including synthesis of different glycosides and sugar-functionalized bioactive compounds for pharmaceutical application. During my school days, I was always excited to draw new organic molecules in my notebook. The idea that fascinated me was the possibility that a molecule may not exist, but I could bring it to existence by synthesizing it. I can create libraries of molecules yet unknown to science. This excitement always drives me to pursue unique challenges in synthetic organic chemistry.

Can you set this article in a wider context?

The amide bond synthesis is one of the most used reactions in medicinal chemistry. In this article, 2-pyridine sulfonyl fluoride has been employed as a deoxy fluorinating reagent of carboxylic acids to acyl fluorides under mild conditions, followed by one-pot amidation and esterification. Moreover, it is a more atom-economic amide coupling reagent than commonly used chemicals. This finding will encourage the extension of the synthesis of organofluorine compounds, which are the essential intermediate in several chemical transformations.

What do you hope your lab can achieve in the coming year?

In the coming year, we would like to further explore deoxyfluorination method on carbohydrate chemistry. Our aim is to offer a sustainable process to access complex natural and unnatural organic molecules including glycohybrid structures for potential application.

Describe your journey to becoming an independent researcher.

I progressed as a researcher after joining at Bose Institute for doctoral studies (with Prof Anup Kumar Misra). Throughout this time, I was interested in new catalytic methods for organic reactions, including carbohydrate functionalization and different types of coupling reactions. I was fortunate enough to get further opportunities that enabled me to continuously explore this diverse area specialising in stereoselective synthesis of 2-deoxy glycosides (with Prof. M. Carmen Galan at the University of Bristol, Unite Kingdom) and modifying the chemical reactivity of organic molecule using physical tools vibrational strong coupling (with Prof. Joseph Moran, University of Strasbourg). In 2021, I started my independent research journey to further explore the deoxyfluorinated chemistry and synthesis of different type of bioactive molecules.

What is the best piece of advice you have ever been given?

My postdoc supervisor’s wise words – “Do slowly but surely”

Why did you choose to publish in ChemComm?

ChemComm is one of the most renowned and reputed chemistry journal. ChemCom has greatly supported organic synthesis, constantly pushing new horizons with exciting publications showcasing novel ideas and robust findings. The pleasant surprise was the fast-paced timescale ChemComm adhered to.

Dr Abhijit Sau earned his BSc (2007) and MSc (2009) in Chemistry from Vidyasagar University, West Bengal, India. Subsequently, he carried out his doctoral research at Bose Institute, Kolkata with Prof. Anup Kumar Misra during 2009 – 2014. Moving forward, Dr Sau secured Johan Gadolin postdoctoral fellowship from Åbo Akademi University, Finland, in 2014. In 2015, he started working as a postdoctoral researcher with Prof M. Carmen Galan at the University of Bristol, United Kingdom. Afterward, he joined the Prof. Moran group at the University of Strasbourg, France, with the prestigious Marie Curie postdoctoral fellowship. He was recognized for his academic excellence and was awarded the Ramanujan Fellowship from SERB, India, to start his independent career at CSIR-IICT Hyderabad in 2021. Since April 2022, Dr Sau has been working as an Assistant Professor in the Department of Chemistry at IIT Hyderabad.

Webpage: https://iith.ac.in/chy/asau/

Explore more ChemComm Milestones news and updates on our X Feed (@ChemCommun) and LinkedIn (ChemComm Journal)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm 60th Anniversary Board Member Collection

 

Chemical Communications will be publishing its 60th volume in 2024. Over the past 60 years, ChemComm has been the RSC’s most cited journal, and one of the most trusted venues for rapid publication of short communications. In our anniversary year, we recognise the important contributions ChemComm has made, and continues to make, in advancing the chemical sciences.

As part of these celebrations, we’ve brought together a special collection highlighting the latest work from the pioneering researchers who have supported the journal in reaching this milestone by serving on ChemComm’s Editorial and Advisory boards in the last two decades. Throughout the year, we’ll be catching up with these current and former Board Members to discuss their work and reflect on ChemComm’s 60th anniversary. Check out our interviews with current Associate Editor, Professor Marinella Mazzanti, and Advisory Board member, Professor Silvia Marchesan, below!

  Marinella Mazzanti was born in Vinci, Italy. She obtained a Master’s degree from the University of Pisa in 1985 and a PhD from the University of Lausanne in 1990. Shortly after she moved as a post-doc to the University of California, Berkely, before moving to the University of California, Davis. In 1994 she was awarded a Marie-Curie fellowship to work at the French National Laboratory, CEA, in Grenoble. In 1996 she took a research scientist and team leader position at the CEA Grenoble. In September 2014 she joined the EPFL as a Professor and founded the Group of Coordination Chemistry. Her research activities have been centered on f element coordination and supramolecular chemistry, redox reactivity, and small molecule activation.

She received the 2021 F. Albert Cotton Award in Synthetic Inorganic Chemistry and the LeCoq de Boisbaudran Senior Award in 2023.

What attracted you to the role as Editorial Board Member for ChemComm?

The possibility to contribute to the journal with my experience and the potential to attract more members of my community to publish in the journal. ChemComm is the journal where my very first work was published as a PhD student 40 years ago (J. Chem. Soc., Chem. Commun., 1984, 1116-1118) and that created a long lasting connection.

What is your favourite thing about ChemComm?

The possibility of sharing very quickly  urgent results and the competence and efficiency of the editorial stuff.

In what ways do you think ChemComm stands out among other journals in your field?

ChemComm has remained faithful to its original mission and gives the possibility to share important and impactful discoveries without wrapping up every single possible experiment. The format renders it a very accessible read that allow to attract attention to a single result

Could you provide a brief summary of your recent ChemComm publication?

We isolated the first example of a trinuclear U(III) complex showing magnetic exchange and reported a rare magneto-structural study for a uranium system. Moreover, preliminary reactivity studies showed that the isolated trinuclear U(III) complex promotes the reduction of one molecule of dinitrogen in the presence of an external reducing agent. These studies demonstrate the versatility of the silsesquioxane scaffold for assembling polymetallic complexes of low valent uranium that possess unusual properties.

In your opinion, what are the next steps or potential areas of research that could build upon the findings in this paper?

The findings presented in this paper should stimulate the use of polydentate siloxides to build polynuclear complexes of uranium both for dinitrogen functionalization or for the development of uranium based single molecule magnets leading to important step forward in both fields.

 

Read Marinella’s full Communication here: A trinuclear metallasilsesquioxane of uranium(iii) by Maxime Tricoire, Nadir Jori, Farzaneh Fadaei Tirani, Rosario Scopelliti, Ivica Živković, Louise S. Natrajan and Marinella Mazzanti

 

Silvia Marchesan obtained her PhD in Chemistry at The University of Edinburgh (2008, UK). Prior to this, she obtained her Pharmaceutical Chemist (2007, UK) & Pharmacist (2006, Italy) qualifications and was an honorary researcher at UCL (London, 2005-2007). She conducted Postdoctoral research as an Academy of Finland Fellow at University of Helsinki (2008-2010) and a CRSS Fellow jointly at Monash University and Commonwealth Scientific Industrial Research Organization, CSIRO (Melbourne, 2010-2012). In 2013 she returned as an Assistant Professor to the University of Trieste where her scientific adventure had started with the M.Sc. degree, (honours). In 2018 she became Associate Professor and received the Habilitation as Full Professor. In 2021-2022 (6 mo.) Silvia was a Visiting Academic at the University of Cambridge (UK). She is currently a member the Editorial Board of ACS Nano and of the Advisory Board of Chem, ChemComm, J. Mater. Chem. B, ACS Appl. Bio Mater., Chem. Eur. J., Soft Matter, Materials Advances.

What attracted you to the role as Editorial Board Member for ChemComm?

ChemComm gave me the opportunity to publish my first work as corresponding author on what then became my main research line. I truly enjoyed the constructive peer-review process and since then my desire grew to support the journal and emerging PIs in a similar way.

How have you seen ChemComm evolve over the years, and what aspects do you find most noteworthy?

I appreciate ChemComm‘s simple format and speedy publishing process. Through the years it maintained its leading role in publishing concise and effective communications across the chemical sciences, giving more and more visibility to emerging PIs through Feature papers and Highlights. This is important to grow and shape the community and the leaders of the future.

What is your favourite thing about ChemComm?

ChemComm embraces diversity and is an inclusive journal that strives to present research voices from all over the world, regardless of country, nationality, gender, or specific research line. This is very important to ensure that every chemist with a brilliant idea gets the chance to grow as a PI.

In what ways do you think ChemComm stands out among other journals in your field?

The 4-page format and the wide readership of ChemComm make it an ideal journal to rapidly publish fresh ideas in a simple process. The number of referees involved in peer-review is consistent and appropriate. I have had articles in other journals being reviewed by as many as 5 referees and through iterative revisions that delayed the publication of our research by several months, if not years!

Are there ways in which the journal can further support and engage with future generations of scientists?

Ensuring the presence of ChemComm on the communication platforms and events where there is a large presence of junior chemists is an effective strategy as well as encouraging their active interaction with ChemComm. Associating ChemComm with their recognition, for instance through poster and student prizes, will certainly remind them of the opportunity to publish their best research results in ChemComm.

Could you provide a brief summary of your recent ChemComm publication?

The design rules for self-assembling simple molecules have been emerging recently, but often scientists are baffled by an unexpected macroscopic outcome, e.g., a crystal as opposed to a gel. This work reveals how that process is determined by the molecular conformations visited in aqueous solution, specifically depending whether they are folded or extended. We can expect opposite behavior in organic solvents, as described by Steed and colleagues using different techniques (doi:10.1039/D3SC03841F).

In your opinion, what are the next steps or potential areas of research that could build upon the findings in this paper?

In our work we specifically analyzed dipeptides with hydrophobic sidechains. It would be very interesting to study how general is the process, depending not only on the nature of the gelator and the solvent, but also on the molecular size and type of design. High value lies in the identification of spectroscopic signatures that can be quickly assigned to specific conformers, so as to easily predict which type of solid will arise from self-assembly.

 

Read Silvia’s Communcation article here: Diverging conformations guide dipeptide self-assembly into crystals or hydrogels by M. Monti, E. Scarel, A. Hassanali, M. Stener and S. Marchesan

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)