We are excited to share the success of Jonathan De Tovar’s first-time article in ChemComm; “Insights into non-covalent interactions in dicopper(ii,ii) complexes bearing a naphthyridine scaffold: anion-dictated electrochemistry” included in the full milestones collection.
Read our interview with Jonathan below.
What are the main areas of research in your lab and what motivated you to take this direction?
Our research team, CIRe, is actively engaged in addressing challenges related to bio-inspired catalysis, bio-targeted coordination chemistry, and photo-induced processes. CIRe’s work encompasses both fundamental research and practical applications, including strategies for the conversion of CO2 and alkanes into high-value building blocks and hydrocarbon fuels, along with efficient solar energy utilization.
Additionally, while exploring diverse research domains, our trajectory is influenced by the challenges we encounter. For instance, we have delved into understanding the influence of non-covalent interactions in tuning the redox potentials of dicopper(II,II) complexes.
Can you set this article in a wider context?
This article positions itself within the broader context of non-covalent interactions in dicopper(II,II) complexes, with a specific focus on their impact on redox potentials. The significance of this work extends to the wider field of catalysis, where the exploration of non-covalent integrations holds promise for unlocking new possibilities in selective C-H functionalization. Our findings contribute to advancing the understanding of these interactions, providing valuable insights for the development of catalysts with enhanced efficiency and selectivity in challenging electrochemical reactions.
What do you hope your lab can achieve in the coming year?
In the coming year, our lab aims to further unravel the subtleties of non-covalent integrations in transition metal complexes for electrochemically catalyzed reactions. We aspire to refine our understanding of the underlying mechanisms and explore novel ligand architectures that enhance the catalytic performance of such complexes. Additionally, we aim to disseminate our findings through impactful publications and foster collaborations that will accelerate the translation of our research into practical applications.
Describe your journey to becoming an independent researcher.
My journey to becoming an independent researcher has been marked by a continuous exploration of both molecular and colloidal catalysts for small molecules activations. Starting from my doctoral studies, where I investigated Pd- and Co-based (nano)catalyst for C-C coupling reactions and artificial photosynthesis, progressively focused on the development of my expertise in designing and optimizing molecular catalysts for pivotal transformations.
Continuing as postdoctoral researcher in the design of catalysts exhibiting agostic interactions followed by their immobilization trough both covalent and non-covalent interactions, highlighted the importance of such interactions when understanding the modus operandi and fate of catalysts under turnover conditions.
This journey has been instrumental in shaping my commitment to addressing challenges in different electrocatalysis domains and establishing myself as an independent researcher in the field of non-covalent interactions.
What is the best piece of advice you have ever been given?
One of the most valuable advices I received came from my colleague Dr. Catherine Belle: “Sometimes, it’s not just about focusing solely on the immediate path but exploring lateral perspectives. Learning to see things from other points of view by changing your way of thinking may help you better understand what surrounds you.”
Why did you choose to publish in ChemComm?
Choosing to publish in ChemComm was a strategic decision aligned with the journal’s reputation for disseminating cutting-edge research. The rapid dissemination and broad readership of ChemComm provide an excellent platform for sharing our findings on non-covalent integrations in dicopper(II,II) complexes. By contributing to ChemComm, we aim to stimulate discussions within the scientific community and showcase the potential of our research to influence the broader landscape of catalytic transformations involving such non-covalent interactions.
Dr J. De Tovar completed his PhD in 2018 at the Autonomous University of Barcelona, where he explored Pd- and Co-based (nano)catalysts for C-C coupling reactions and artificial photosynthesis under the guidance of Dr. Jordi García-Antón and Dr. Xavier Sala. Notably, his research delved into photophysical and dynamical phenomena within molecular and colloidal systems, thanks to the privilege of engaging in collaborative research with esteemed scientists such as Dr. Karine Philippot (LCC-CNRS, Toulouse), Dr. Zoraida Freixa (UPV-EHU, San Sebastián), Dr. Antoni Llobet (ICIQ, Tarragone), and Dr. Nathan McClenaghan (ISM-CNRS, Bordeaux).
Following his doctoral studies, J. De Tovar continued his research by joining Dr. Laurent Djakovithc and Dr. Franck Rataboul for a 2-year postdoctoral stay at the Institute des Recherches sur la Catalyse et l’Environnement de Lyon. There, he focused on developing NHC-containing Pd complexes for the in-situ generation of highly reactive Pd species in C-C coupling reactions. Afterward, he joined Dr. Vincent Artero and Dr. Matthieu Koepf at Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA-Grenoble), dedicating 2 years to studying the mechanisms of CO2 and N2 electrochemical reduction reactions using pincer-containing transition metal complexes. In 2023, J. De Tovar joined Dr. Aurore Thibon-Pourret and Dr. Catherine Belle at the Département de Chimie Moléculaire – Université Grenoble Alpes as a postdoctoral researcher, focusing on the development of Cu-based complexes for the activation and further selective oxidation of recalcitrant C-H bonds. His current research interests center around bio-inspired catalysis, showcasing his dedication to pushing the boundaries of knowledge in this dynamic field. Twitter/X: @DCMGrenoble Linkedin: Jonathan De Tovar Villanueva |
Explore more ChemComm Milestones news and updates on our X Feed (@ChemCommun) and LinkedIn (ChemComm Journal)