Archive for May, 2023

ChemComm Milestones – Zhen Jiang

We are excited to share the success of Zhen Jiang’s first-time independent article in ChemComm; “Designing strong, fast, high-performance hydrogel actuators” included in the full milestones collection. 

Read our interview with Zhen below.

What are the main areas of research in your lab and what motivated you to take this direction?

In my project, harnessing the power of organic/polymer chemistry, we are designing and synthesizing new polymeric materials that could shape the future of soft robotics. The created polymers can change their shape or size in response to stimuli like electricity, heat, light, chemical or pH. We are very passionate about this research because we believe that expansion of the capabilities of soft robotics requires new synthetic polymeric materials.

Can you set this article in a wider context?

A key component in soft robotic devices is soft actuators which can transduce energy into mechanical motions. Among all of the soft actuator materials, hydrogels absorbing large amounts of water are particularly promising to be integrated into soft robotics, due to their tissue-like softness, and ability to undergo large deformations. However, there are substantial shortcomings that limit their performance and real-world applications.

In this Highlight, we discuss the recent advances in material designs to address pre-existing limitations in hydrogel actuators such as poor mechanical properties, slow actuation speed and limited actuation performance. We also comment on the important role of synthetic chemistry in creating hydrogel actuators with improved material performance and exceptional functionalities. It is thus anticipated that our article can spark great interest among chemistry community in developing advanced materials for soft robots.

What do you hope your lab can achieve in the coming year?

In the next few years, using molecular design principles, we will focus on synthesizing advanced soft actuator materials exhibiting a unique combination of high-power actuation, excellent mechanical properties and good processability.

Describe your journey to becoming an independent researcher.

I did my Master in Material Science at Fudan University, China. I was trained with extensive organic chemistry skills to synthesize functional small molecules/polymers and learned how to design photodeformable polymers. Then I went to University of Queensland for my PhD study, working on a number of projects related to synthetic polymers while aiming for different applications including high-resolution lithography, functional nanopatterns and soft actuators. These research experience enable me to develop a high level of independence which lay foundation for my current project. In 2022, I was awarded an Australian Research Council Discovery Early Career Researcher Award (ARC DECRA) to broaden my network and mature as an independent researcher.

What is the best piece of advice you have ever been give?

The best advice I have received is probably from my Master supervisor Prof. Yanlei Yu at Fudan University “Opportunities are only for those who are prepared”. This advice helps me get through the tough time in my research career, and keeps me optimistic and have faith.

Why did you choose to publish in ChemComm?

As a polymer chemist, I am a regular reader of ChemComm which is one of the best journals in the field of chemical science. The reviewer’s comments are very helpful in improving the quality of submitted manuscripts. I am also especially impressed by its strong support to early career researchers.

Zhen Jiang is an early-career polymer chemist, specializing in designing and synthesizing stimuli-responsive soft materials for soft robotics and artificial muscles. He received his B.Eng. in Polymer Science and Engineering from Donghua University in 2011, his M.Eng. in Materialogy from Fudan University in 2014, and his Ph.D. in Polymer Science from The University of Queensland in 2018. In 2022, he received Discovery Early Career Researcher Award (DECRA) from Australian Research Council (ARC) to advance his research career. His research interests include soft actuators, liquid crystalline elastomers, hydrogels, and photo-responsive polymers.

Explore more ChemComm Milestones news and updates on our Twitter: @ChemCommun

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Dinesh Shetty

We are excited to share the success of Dinesh Shetty’s first-time independent article in ChemComm; “Salicylaldehydate coordinated two-dimensional-conjugated metal–organic frameworks” included in the full milestones collection. 

Read our interview with Dinesh below.

What are the main areas of research in your lab and what motivated you to take this direction?

We are working on designing tunable porous materials for energy and water purification applications. The major focus is to develop framework materials/membranes for emerging water pollutants removal and also for desalination via capacitive deionization. In parallel, we are working on both photocatalytic and electrocatalytic framework materials for CO2 and N2 conversion, battery, and supercapacitor. The motivation is stemming from the fact that both focused research areas are socially relevant and need of the time.

Can you set this article in a wider context?

The novelty of this work is in its simplicity. The building block that we utilized for the construction of conjugated MOFs can be synthesized economically and the method we followed is green (first time in c-MOFs synthesis). The advantage of these combinations helping us to scale up and utilize these interesting materials in many applications.

What do you hope your lab can achieve in the coming year?

We are in the direction of achieving an interesting efficient framework system (both covalent organic frameworks and conjugated metal organic frameworks) that can be useful in energy conversion and water purification. We are on the path to developing a scaleup fabrication setup for above mentioned materials, which will help us to achieve the path of real-life applications (in a way commercialization)

Describe your journey to becoming an independent researcher.

It was a rough one but I started to appreciate it more now. It took 8 years after my PhD to get an independent position, however, those years of experience in interdisciplinary fields and spending time with world-renowned scientists really helped me to shape my career. The journey also helped me to gain my trust in the relevance of perseverance and hard work to achieve your dreams. Another advantage of my journey is learning multicultural scientific environment (I spent time in India, USA, and South Korea before starting my independent career), which is greatly helping me to supervise a group of scientists and students coming from different parts of the world.

What is the best piece of advice you have ever been give?

It was from my parents: ‘Your knowledge should not be judged by your medals/laurels but should be judged by how it helps solve the social problems

Why did you choose to publish in ChemComm?

Firstly, it is one of the best short communications journals: readers friendly and has sharp scientific ideas and broad-readership. Secondly, it is close to my heart as I published a major part of my PhD work in this journal many years ago.

Dr. Dinesh Shetty is an Assistant Professor of Chemistry in the College of Arts and Science, Khalifa University since fall-2019. He holds Ph.D. in chemistry from Seoul National University (SNU), South Korea. From 2011 to 2013, he was a postdoctoral fellow at Winship Cancer Institute, Emory University, USA, and later moved back to South Korea in the year 2013 where he was a research fellow in the group of Professor Kimoon Kim at the Center for Self-assembly and Complexity, Institute for Basic Science, POSTECH. In 2016, he moved to New York University Abu Dhabi as a research scientist. He is a trained chemist with experience in multidisciplinary research areas including material science, porous materials, renewable energy, water purification, supramolecular chemistry, and biomedical science. He is the author of 53 peer-reviewed journal papers, >30 conference papers, 21 invited talks, and 6 patents with an h-index of 27.

He received Young Investigator Award from the Korean Society of Nuclear Medicine and the Best Researcher Award from the Korean Cancer Research Foundation. He is the recipient of the US National Academy of Science Arab-American Frontiers seed grant. His author profile was recently introduced by Angewandte Chemistry International Edition, a flagship chemistry journal. He delivered research talks in multiple countries and is currently an active member of the Royal Society of Chemistry under the Future Leaders in the Filed category. In his free time, he writes poems and newspaper column articles and also podcasts his thoughts. His research interest is focused on the development of multifunctional materials for various applications including energy, water purification, and biomedical applications.

A list of publications can be found at:

Google Scholar: https://scholar.google.com/citations?hl=en&user=QVgucAQAAAAJ&view_op=list_works&sortby=pubdate

Explore more ChemComm Milestones news and updates on our Twitter: @ChemCommun

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)