Archive for August, 2018

Kicking Air Out: Recycling Xenon with ZIF-8 Metal Organic Framework

Xenon (Xe) is a noble gas that is widely used in lighting industry and medical imaging. Due to its trace amount in air and the energy-consuming, labor-intensive manufacturing process, Xe has a market price approximately 100 times higher than nitrogen gas (N2). Therefore, recycling Xe is practically necessary and economically appealing.

Recently in ChemComm, scientists from Colorado School of Mines (U.S.) and Pacific Northwest National Laboratory (U.S.) demonstrated an effective method to recover Xe from Xe/air mixtures. The key material this approach needs is a thin piece of film made of a microporous crystalline metal organic framework (MOF)—ZIF-8 (zeolite imidazole framework-8).

The unique porous structure of ZIF-8 renders it capable of separating Xe from N2 and O2. The pore size of ZIF-8 is in the range of 0.4-0.42 nm, and the sizes of Xe, N2 and O2 molecules are 0.41 nm, ~0.36 nm and ~0.35 nm, respectively. When Xe/air mixtures are pushed towards a ZIF-8 film, the small N2 and O2 molecules are able to permeate the film while the relatively large Xe molecules are blocked. This results in the separation of Xe from N2/O2. The ZIF-8 film in this case serves as a gas sieve (Figure 1).

Figure 1. A ZIF-8 MOF film functions as a molecular sieve that separates Xe from N2 and O2. The pores of ZIF-8 are large enough to pass through N2 and O2 molecules but are too small for Xe to enter.

The mechanism mentioned above was experimentally verified. The researchers observed that the flow rate of air through a ~10 µm ZIF-8 film was almost 10 times higher than that of Xe. In addition, reducing the film thickness and lowering the temperature were found to enhance the separation efficiency.

This work clearly demonstrates the promising performance of ZIF-8 for gas separation. It also highlights the versatile functionalities of MOFs.

 

To find out more please read:

Recovery of Xenon from Air over ZIF-8 Membranes

Ting Wu, Jolie Lucero, Michael A. Sinnwell, Praveen K. Thallapally and Moises A. Carreon

Chem. Commun., 2018, 54, 8976-8979

 

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Chemistry from University of California, Santa Cruz in the United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT ChemComm articles for July

All of the referee-recommended articles below are free to access until 5th September 2018.

Transformation of single MOF nanocrystals into single nanostructured catalysts within mesoporous supports: a platform for pioneer fluidized-nanoreactor hydrogen carriers
Ignacio Luz, Mustapha Soukri and Marty Lail
Chem. Commun., 2018,54, 8462-8465
DOI: 10.1039/C8CC04562C, Communication

_____________________________________________________________

Defective Pt nanoparticles encapsulated in mesoporous metal–organic frameworks for enhanced catalysis
Qiang Wang, Xu-Sheng Wang, Chun-Hui Chen, Xue Yang, Yuan-Biao Huang and Rong Cao
Chem. Commun., 2018,54, 8822-8825
DOI: 10.1039/C8CC04485F, Communication

_____________________________________________________________

Tetrahedral DNAzymes for enhanced intracellular gene-silencing activity
Hien Bao Dieu Thai, Fabienne Levi-Acobas, Soo-Young Yum, Goo Jang, Marcel Hollenstein and Dae-Ro Ahn
Chem. Commun., 2018, Advance Article
DOI: 10.1039/C8CC05721D, Communication

_____________________________________________________________

Strong carbon cage influence on the single molecule magnetism in Dy–Sc nitride clusterfullerenes
Christin Schlesier, Lukas Spree, Aram Kostanyan, Rasmus Westerström, Ariane Brandenburg, Anja U. B. Wolter, Shangfeng Yang, Thomas Greber and Alexey A. Popov
Chem. Commun., 2018, Advance Article
DOI: 10.1039/C8CC05029E, Communication

_____________________________________________________________

CdZnSe@ZnSe colloidal alloy quantum dots for high-efficiency all-inorganic perovskite solar cells
Qinghua Li, Jinke Bai, Tingting Zhang, Chao Nie, Jialong Duan and Qunwei Tang
Chem. Commun., 2018, Advance Article
DOI: 10.1039/C8CC05517C, Communication

_____________________________________________________________

Upgrading gasoline to high octane number using Zeolite-like Metal Organic Framework molecular sieve with ana-topology
Mohamed Eddaoudi,  M Infas Mohideen,  Youssef Belmabkhout,  Prashant Bhatt,  Zhijie Chen,  karim adil  and  Aleksander Shkurenko
Chem. Commun., 2018, Accepted Manuscript
DOI: 10.1039/C8CC04824J, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Marbles, Microreactions and Magic Tricks

The reaction vessel is a fixed variable behind every innovative chemical synthesis, material or catalyst. It may be as simple as a round bottom flask or as complex as a single cell, as large as an industrial batch reactor or as small as a test tube.

Yujun Feng and co-workers, at Sichuan University in China, study a different kind of reaction vessel: water droplets. The droplets are ‘liquid marbles’, composed of microlitre volumes of water with fine hydrophobic particles covering their surface. Liquid marbles can be used as reaction vessels to manipulate small liquid volumes, avoiding the use of specialised microfluidics equipment. In this communication the authors show that carbon dioxide can trigger coalescence of droplets containing multiple reagents, in order to perform microscale chemistry. This research could be useful for developing high-throughput assays for procedures that would benefit from remotely controlled induction such as very fast or hazardous reactions.

The authors synthesised CO2-responsive particles composed of a mixture of polystyrene and PDEA: a methacrylate polymer bearing tertiary amine ancillary groups. The amine is vital to the properties of the polymer: when deprotonated the powder is hydrophobic, but exposure to carbon dioxide renders the polymer hydrophilic by transforming the amine into an ammonium bicarbonate salt. Liquid marbles were synthesised with a patch of CO2-responsive polymer powder. The rest of the marble was coated in lycopodium, a moss spore with hydrophobic properties that is not CO2-responsive (trivia: the high fat content of lycopdoium makes it a great flash powder, used by magicians since the middle ages).

A) Liquid marbles with white hydrophobic/hydrophilic CO2-responsive patches and pink (dyed) lycopodium powder. B) Coalescence of two liquid marbles upon CO2 carbon dioxide exposure within one minute. C) Coalescence schematic

A) Liquid marbles with white CO2-responsive patches and pink (dyed) lycopodium powder. B) & C) Photos and schematic of coalescence between two liquid marbles upon CO2 exposure

To realise CO2-induced chemistry, two liquid marbles containing different chemical reagents are placed side by side with the CO2-responsive powder positioned at the interface of the two marbles. Upon exposure to CO2 the responsive powder becomes hydrophilic and disperses into the aqueous solution within the two marbles, causing them to coalesce and the reagents to react within a single vessel. The authors performed several reactions using this method, all with distinct colour changes for rapid analysis: redox (persulfate and iodide, permanganate and persulfate), complexation (starch and iodine), substitution (bromine water and phenol) and chemiluminescence (luminol, peroxide and ferricyanide).

The authors show in this paper that innovations in chemistry needn’t be limited to reactions themselves; the vessel we choose can broaden what is possible on a practical level. On a completely impractical note, remotely controlled microreactions in liquid marbles sounds like a magic trick, resonant with the lycopodium flash powder covering their surface.

To find out more please read:

CO2-triggered microreactions in liquid marbles 

Xinjie Luo, Hongyao Yin, Xian’e Li, Xin Su, Yujun Feng.
Chem. Commun., 2018, Advance Article
DOI: 10.1039/c8cc01786g

About the author

Zoë Hearne is a PhD candidate in chemistry at McGill University in Montréal, Canada, under the supervision of Professor Chao-Jun Li. She hails from Canberra, Australia, where she completed her undergraduate degree. Her current research focuses on transition metal catalysis to effect novel transformations, and out of the lab she is an enthusiastic chemistry tutor and science communicator.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Poster Prize winner for the 2nd Early Career Researchers Meeting of the RSC–Macrocyclic and Supramolecular Chemistry Group

Dr Guillaume De Bo (left) presenting the ChemComm prize to Alexander Elmi (right).

The 2nd Early Career Researchers Meeting of the RSC-Macrocyclic and Supramolecular Chemistry (RSC-MASC) Group took place on 27th July 2018 at the University of Manchester, UK. This one-day symposium was organised by Dr. Guillaume De Bo (University of Manchester) and was attended by PhD students and post-doctoral researchers within the supramolecular field.

The meeting consisted of fifteen selected talks from submitted abstracts, and all attendees were invited to present a poster. The day ended with a plenary lecture by Professor Anthony Davis (University of Bristol) on ‘Biomimetic Carbohydrate Recognition:  The Host-Guest Chemistry of Carbohydrates in Water’.

ChemComm was proud to sponsor this successful symposium. Alexander Elmi (University of Edinburgh) received the ChemComm poster prize for his poster entitledUnderstanding Aromatic Stacking Interactions In Solution’.

 

Congratulations Alexander from everyone at ChemComm!

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)