One minute synthesis for microporous materials

Michael Parkin writes about a hot ChemComm article for Chemistry World

Researchers in Japan have developed the fastest known synthetic route for preparing crystalline microporous solids. The method is currently being scaled-up to meet the increasing demand for these versatile materials in industrial applications.

AlPO4-5 has been commercialised as a vapour adsorbent for refrigerators

Crystalline microporous solids are an important class of inorganic material that impact our everyday lives. Their ordered structures contain arrays of channels and voids several nanometres across, enabling them to selectively and reversibly absorb molecules based on their shapes and sizes. This has led to their widespread use as catalysts, molecular sieves and gas sensors. Research into their potential use as hydrogen storage materials for mobile energy applications is also ongoing.

However, microporous solids often crystallise slowly and typically require several hours to several weeks of hydrothermal treatment to achieve satisfactory yields, limiting their applications on industrial scales. Now, a collaborative effort from the University of Tokyo and the Mitsubishi Chemical Group has led to an ultra-fast method for preparing the aluminophosphate AlPO4-5. A combination of rapid heating and crystal seeding completes the synthesis within one minute.


Read the full article in Chemistry World»

Read the original journal article in ChemComm:
One-minute synthesis of crystalline microporous aluminophosphate (AlPO4-5) by combining fast heating with a seed-assisted method
Zhendong Liu, Toru Wakihara, Daisuke Nishioka, Kazunori Oshima, Takahiko Takewaki and Tatsuya Okubo  
Chem. Commun., 2014, Advance Article, DOI: 10.1039/C3CC49548E, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)