Designer esters for complex carbohydrates

Eleanor Merritt writes about a HOT ChemComm article for Chemistry World

Scientists based in the US have developed a new strategy to simplify the chemical synthesis of complex carbohydrates.

TFA simultaneously cleaves all protecting groups from the precursors to form the desired oligosaccharides in quantitative yields

Oligosaccharides are polymeric carbohydrates consisting of a small number of monosaccharide monomers. They are essential to all cellular organisms, playing vital roles in cell recognition and signalling.

Automated methods are routinely used to prepare biomacromolecules such as peptides and nucleic acids, but similar strategies in oligosaccharide synthesis are far less developed. Oligosaccharides contain a large number of hydroxyl groups which normally have to be protected orthogonally, i.e. in such a way that they can be unmasked independently of one another. This poses a great challenge to chemists and has hindered progress towards automated carbohydrate synthesis.

Classical protecting groups for hydroxyl groups include benzyl ethers, which are generally removed via hydrogenolysis or dissolving metal reduction, and acetate, benzoate or pivaloate esters, which are cleaved using base-catalysed hydrolysis. While these reactions are well established, a high level of training in practical organic chemistry is required to carry them out, in contrast to deprotection in automated peptide synthesis, which can be as simple as shaking the protected molecule with an acidic or basic solution.

Xinyu Liu and Yao Li at the University of Pittsburgh have developed a series of acid-cleavable PMB- and NAP-capped 4-hydroxybutanoic acid and 2-(hydroxymethyl)benzoic acid ester-type protecting groups that act as surrogates of acetate and benzoate. Trifluoroacetic acid (TFA) in toluene can simultaneously cleave all of these groups during the final stage of an oligosaccharide assembly to emulate the synthetic efficiency traditionally reserved for peptide chemistry.


Read the full article in Chemistry World»

Read the original journal article in ChemComm:
Tunable Acid-Sensitive Ester Protecting Groups in Oligosaccharide Synthesis
Yao Li and Xinyu Liu  
Chem. Commun., 2013, Accepted Manuscript, DOI: 10.1039/C3CC49205B, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)