Archive for the ‘Emerging Investigators’ Category

Polymer Chemistry Emerging Investigator- Junpeng Zhao

Junpeng Zhao received his B.S. (2005) and Ph.D. (2010) from University of Science and Technology of China under the supervision of Prof. Guangzhao Zhang. From 2007 to 2009, he undertook a joint Ph.D. appointment, supported by China Scholarship Council, in National Hellenic Research Foundation (Greece) under the supervision of Prof. Stergios Pispas. Afterwards, he was a postdoctoral researcher first at Max-Planck Institute of Colloids and Interfaces (Germany) with Prof. Helmut Schlaad and Prof. Markus Antonietti (2011-2012), and then at King Abdullah University of Science and Technology (Saudi Arabia) with Prof. Nikos Hadjichristidis (2012-2014). In early 2015, he joined South China University of Technology and began his professorship. His main research interest is synthetic polymer chemistry, with special focus on anionic polymerization, organocatalytic/metal-free polymerization, and synthesis of polymers from renewable resources. He has been the coauthor of 70 peer-reviewed papers and 15 patents, and the (co)supervisor of 25 master/Ph.D. students.

 

Read Junpeng Zhao’s Emerging Investigator’s article, ‘ Selective ring-opening polymerization of glycidyl esters: a versatile synthetic platform for glycerol-based (co)polyethers

Read our interview with Junpeng below.

 

1. How do you feel about Polymer Chemistry as a place to publish research on this topic?

Submitting my work to Polymer Chemistry ensures a pleasant reviewing process as well as timely publication.

 

2. What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

What I am most excited about at the moment is the strict but readily tunable chemoselectivity of two-component organocatalysts which enables precise and convenient synthesis of an increasingly large variety of functional and/or complex polymers. What I have found most challenging is understanding polymerization mechanism, without disproving it soon after.

 

3. In your opinion, what are the most important questions to be asked/answered in this field of research?

How can we avoid major side effects when trying to make the world a better place using synthetic polymers? What can we learn from nature about designing and tailoring polymer structures and functions?

 

4. Can you share one piece of career-related advice or wisdom with other early career scientists?

New successes may hide in experiments which seem to have failed at first glance.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymer Chemistry Emerging Investigator- Mingjun Huang

Mingjun Huang obtained his B.S. at Peking University in 2010. Then he worked on macromolecular self-assembly with Prof. Stephen Z.D. Cheng at the University of Akron, and obtained his PhD degree in Polymer Chemistry in 2015. After that he moved to MIT and joined the Jeremiah Johnson group as a postdoc, working on battery electrolyte material development. From February 2019, Mingjun started his independent career in South China University of Technology (SCUT). He is currently a professor in South China Advanced Institute for Soft Matter Science and Technology & School of Emergent Soft Matter. He mainly focuses on the novel functional soft matter development within the scope of optics, electric, and energy storage. The main research projects involve: 1) Liquid crystals/liquid crystal polymers with unprecedented structures and properties for applications in optical and electric materials; 2) Self-assembly study of macromolecules with precise chemical structures in condensed states; 3) Design of functional polymer materials for specific needs in display technology and microelectronic industry.

 

Read Mingjun Huang’s Emerging Investigator’s article ‘ Perfluorocyclobutyl-containing transparent polyimides with low dielectric constant and low dielectric loss

Read our interview with Mingjun below.

 

1. How do you feel about Polymer Chemistry as a place to publish research on this topic?

In my mind, Polymer Chemistry is a leading polymer journal for design, synthesis, structure and property study of polymer materials. Particularly for polyimide research, novelty for chemical structure as well as excellent material property is usually required. I feel a great sense of achievement for publication of this topic on this journal.

 

2. What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

As a polymer chemist, I am most excited about the successful collection of the new polymer samples, after a long journey of monomer design, synthesis and polymerization. I prefer to design monomer structures with simplicity and functionality.

In my research of polyimide materials, the most challenging part is the monomer structure design, i.e. how to balance the polymerization reactivity and targeted functionality in new monomer structure. Obtaining rather high purity of new monomers is also not an easy task for this step polymerization.

 

3. In your opinion, what are the most important questions to be asked/answered in this field of research?

Polyimides have great potentials for applications in microelectronic industry or flexible display technology. In my opinion, the most important question is how to integrate all the required high performances (e.g. good processibility, high transparency, low dielectric, high glass transition temperature, high thermal degradation stability) in one single material through either chemical structure or composite formulation tuning. A shortage in any important material property would prevent its practical application.

 

4. Can you share one piece of career-related advice or wisdom with other early career scientists?

I believe in-depth discussions with senior people in similar research area would be very helpful for seeking the entry point or inspiration of new ideas.

 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymer Chemistry Emerging Investigator- Saihu Liao

Profile picture of Saihu LiaoSaihu Liao studied chemistry at Huazhong University of Science and Technology, and obtained his bachelor degree in 2005. After two years of graduate study with Prof. Yuefa Gong at the same university, he joined Prof. Benjamin List’s group at the Max-Planck-Institute for Coal Research (MPI-KOFO), Germany, where he obtained his doctoral degree in organic chemistry in 2011. Then, he returned to China and joined Prof. Yong Tang’s group as a research associate at the Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences. In September 2016, he started his independent career at Fuzhou University, where he was promoted to full professor in 2017. His current research focuses on the development of new organocatalysts and new strategies for polymerization, with a special concern to photo-control and tacticity-regulation.

 

Read Saihu’s Emerging Investigator article, ‘Organocatalytic Cationic Degenerate Chain Transfer Polymerization of Vinyl Ethers with Excellent Temporal Control’

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

We are interested in the exploration of organocatalysis in polymerization, with a focus on the development of organic photocatalysts and chiral catalysts. As one of the leading journals in polymer chemistry with broad readership, Polymer Chemistry is a wonderful place to publish our research on this topic. We quite appreciate the timely and professional processing of the manuscripts, and also the constructive comments and suggestions from reviewers.

 

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

The most exciting moment could be the time we found some new catalysts were surprisingly effective. A challenging thing to us is just to predict the performance of a new catalyst, e.g. its ability in the temporal or tacticity control.      

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymer Chemistry Emerging Investigator- Shaofeng Liu

Profile picture of Shaofeng LiuShaofeng Liu is a professor at College of Polymer Science and Engineering at Qingdao University of Science and Technology. He received his B.S. in 2005 from Central South University, obtained his Ph.D. in 2011 from Institute of Chemistry Chinese Academy of Sciences (ICCAS) and Université de Strasbourg (UDS) under the supervision of Prof. Wen-Hua Sun and Prof. Pierre Braunstein. He then joined the group of Prof. Tobin J. Marks at Northwestern University as a postdoctoral fellow (2011-2014). In 2015, he moved to Qingdao University of Science and Technology and started his independent research career. His current research interests include organometallic catalysts for olefin polymerization and organocatalysts for sustainable polymers by ring-opening polymerization. 

 

Read Shaofeng’s Emerging Investigator article, ‘Chromium complexes supported by NNO-tridentate ligands: an unprecedented activity with the requirement of a small amount of MAO’

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

Polymer Chemistry is a leading journal and a preferred platform to publish important research in the field of polymer science.

 

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

Our research interests include the development of organometallic catalysts for polyolefins by coordination polymerization and organocatalysts for sustainable polymers by ring-opening polymerization. Therefore, from the view of both catalytic systems (metal-based or metal-free catalysis) and resultant polymer materials (traditional and nondegradable polyolefin or degradable and recyclable polyester/polycarbonate), there seem to exit conflict of interests, which actually become our most excited aspects. For our current research, the most challenging work is designing simple catalysts to synthesize sophisticated polymers with superior performances.  

 

In your opinion, what are the most important questions to be asked/answered in this field of research?

The activity and selectivity are the most considered aspects for various polymerization reactions. In my opinion, how to balance these two aspects would be the most important question in the field of polymer synthesis.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymer Chemistry Emerging Investigator – Nicholas Warren

Profile picture of Nicholas WarrenNick Warren is an Associate Professor at School of Chemical and Process Engineering at the University of Leeds. He was awarded an Masters in Chemistry from the University of Bristol in 2005 following which he conducted two years industrial research. He then moved to the University of Sheffield where he obtained a PhD in Polymer Chemistry. He continued as a postdoctoral researcher in Sheffield working in the area of polymerisation-induced self-assembly (PISA) until 2016, when he moved to Leeds to start his independent research career. His research group aims to design a new generation of sustainable and functional polymer materials by exploiting the latest advances in both polymer chemistry and self-optimising reactor technologies equipped with advanced online monitoring and computer control. He can be found on Twitter @njwarren1.

 

 

 

Read Nick’s Emerging Investigator article ‘Autonomous polymer synthesis delivered by multi-objective closed-loop optimisation’.

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

The vision of our research group is to develop technologies which aim to enhance precision and reproducibility in polymer synthesis and it is therefore vital that we target polymer chemists directly. Polymer Chemistry is the ideal avenue for this, and we hope it encourages adoption of new technologies in polymer synthesis labs around the world. Hopefully over the next few years, we can work with others to discover new materials with our platforms by implementing them for more technically demanding polymerisation processes.

 

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

The ability to control our systems remotely, means we anticipate that networks of reactors in different labs around the world can communicate via cloud computing to optimise and discover new polymers. We are really excited by the fact that this is bringing artificially intelligent approaches to polymer discovery one step closer!

There are many advantages that flow chemistry affords here, but the challenges associated with polymer solutions in flow means a lot of work is required to optimise the reactor geometries and to provide consistent mixing. However, by working with fluid dynamics experts we are beginning to address these problems, which have traditionally been a major barrier. We are also keen to enable multi-step processes, without human intervention with each characterised in real-time. This includes post-polymerisation processing, and purification. There are also significant challenges in dealing with all sorts of data, which means we’re going to need to tailor our machine learning algorithms to accept this – essentially teaching robots how to do polymer synthesis!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymer Chemistry Emerging Investigator – Runhui Liu

Professor Runhui Liu obtained Ph.D in organic chemistry 2009 at Purdue University. Afterward, he took postdoctoral trainings at California Institute of Technology and University of Wisconsin-Madison during 2010-2014. At the end of 2014, he took a professor position in the School of Materials Science and Engineering at East China University of Science and Technology (ECUST). His current research focuses on peptide polymer-based biomaterials for antimicrobial and tissue engineering applications.

 

 

 

Read Runhui’s article ‘Facile Synthesis of Polypeptoid Bearing Bulky Sidechains via Urea Accelerated Ring-Opening Polymerization of a-Amino Acid N-Substituted N-Carboxyanhydrides’.

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

Polymer Chemistry is a wonderful place to publish our work on polymer synthesis.

 

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

I am most excited in exploring new chemistry for polymer synthesis, especially to tackle the long-lasting challenges.

The most challenging things for me as a professor are in two folds: keeping the lab running efficiently and productively with minimum amount of funding; inspiring/encouraging students to work on long-standing challenges but not hot topics, and persuading students to give up results that look interesting and publishable at first glance.

 

Can you share one piece of career-related advice or wisdom with other early career scientists?

As long as the start-up funding can support the lab for the first 3-4 years, focus on science is more productive eventually; as long as the PI and students can survive, no rush to publish or publish a lot at the first 3 years.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymer Chemistry Emerging Investigator – Matthias Hartlieb

Matthias Hartlieb received his PhD in Chemistry in 2015 at the Friedrich Schiller-University in Jena. He proceeded to work as a DFG-funded postdoctoral research fellow at the University of Warwick followed by a research position at the Helmholtz Zentrum Geesthacht. He joined the University of Potsdam in 2019 as an Open-Topic Postdoc and, since 2021, he leads an Emmy Noether research group at Potsdam. His research interests are the design of functional polymeric (bio)materials, specifically in the areas of antimicrobial polymers and supramolecular polymers, using tools such as (photo)-RAFT polymerization or solid phase synthesis. More information can be found on his group website and on Twitter @PolyBioPotsdam.

 

 

Read Matthias’ article ‘The role of reversible deactivation in photo-iniferter RAFT polymerization: high livingness enables the straightforward synthesis of multiblock copolymers’.

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

A significant share of my publications are in Polymer Chemistry and there are reasons for that. Of course, it is one of the leading journals in macromolecular chemistry, and in my opinion, it presents the broadest overview in this area. So, it’s a great journal for researchers to see and be seen. I am also in favor of the uncomplicated and open reviewing process. Waiting times are relatively short and usually feedback is extremely constructive. It might also be a result of my time in the UK, but for me Polymer Chemistry is the journal where I feel most “at home” with my research.

 

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

There are actually at least two aspects I am currently equally excited about. On the one hand there is photo-iniferter RAFT polymerization, which is also the topic of the publication in the special issue. This method has a tremendous potential, both for polymer synthesis as well as for material design. On the other hand, I am very keen on developing new antimicrobial polymers. At some point in the future antibiotics might fail us and then we need to have something to replace them to avoid a drastic decrease in health care quality and life expectancy.

We are looking at the impact of polymer architecture and on the membrane interaction of these polymers, among other things in order to get closer to an application. For the development of new antimicrobial polymers, we are currently implementing PI-RAFT as well.

 

In your opinion, what are the most important questions to be asked/answered in this field of research?

When it comes to antimicrobial polymers, the most important question is how we can improve their properties to bring them closer to an actual clinical application. However, this contains a lot of other questions, as there are many parameters, influencing the bioactivity of these polymers. Overall, their selectivity (targeting bacterial cells over mammalian cells) requires improvement but its not entirely clear how to achieve optimal performance.

We are looking into the polymer architecture, a parameter that hasn’t received much attention. We are also probing different targeting strategies and want to understand the mechanism of membrane interaction of these polymers in more detail.

 

Can you share one piece of career-related advice or wisdom with other early career scientists?

I am happy to forward something that has helped me staying on track: a fellow early career researcher did show me his folder with failed grant applications from the last few years, which had well over 30 items in it. However, he also had one successful one, and that was enough to kick start his career. The same thing happened to me. A lot of failed grant applications, not always with helpful feedback, sometimes without any feedback at all. It is easy to get frustrated at this stage but its important to continue trying. For me eventually, the DFG (Deutsche Forschungsgemeinschaft) thought my ideas regarding antimicrobial polymers were worth funding, which was the start of my independent research group. The lesson seems to be: don’t get discouraged by failure, because there will be a lot of that. Have a plan B but stay on track and try everything you can to follow your goal. Persistence is key (among other things like good mentoring, a supportive family, etc.).

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymer Chemistry Emerging Investigator – Wen-Ming Wan

Dr. Wen-Ming Wan is a Professor at Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. He received his B.E. degree in Polymer Material and Engineering from Harbin Institute of Technology. He received a Ph.D. degree in Polymer Chemistry and Physics from University of Science and Technology of China, where he developed polymerization-induced self-assembly (PISA) method under the supervision of Prof. Cai-Yuan Pan. He completed postdocs at UT Southwestern Medical Center (Dallas) with Prof. Wen-Hong Li, The University of Southern Mississippi with Prof. Charles L. McCormick, and Rutgers University (Newark) with Prof. Frieder Jäkle. He started his independent research career as an Assistant Professor at Centre for Bioengineering and Biotechnology at China University of Petroleum (East China) in 2014, and then moved to Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences in 2018. His current research interests focus on the development of novel polymerization methodologies, including but not limited to Barbier polymerization, living polymerization, polymerization-induced emission (PIE), single-atom polymerization (SAP) and PISA.

 

Read Wen-Ming’s article ‘Room-temperature Barbier single-atom polymerization induced emission as a versatile approach for the utilization of monofunctional carboxylic acid resources’.

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

Polymer chemistry is of significance in polymer science. So, Polymer Chemistry journal is a significant platform to publish important research work in polymer science, including synthesis, functionality and applications of polymers.

 

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

Carbonyl chemistry is fundamental and plays cornerstone roles in synthetic chemistry. Meanwhile, carbonyl compounds are widely and readily available from fossil fuels and biomass, which are important resources on Earth. However, corresponding carbonyl polymerization is rarely investigated. My most excited work at the moment is Barbier polymerization, which successfully realizes the utilization of a varieties of carbonyls as polymerizable groups for the molecular design of nonconjugated luminescent polymers through polymerization-induced emission (PIE) strategy. Currently, the most challenging about my research is to demonstrate the advantages and importance of carbonyl polymerization in both scientific and industrial aspects, which will ultimately allow us to exploit Earth’s carbonyl resources more efficiently and functionally.

 

In your opinion, what are the most important questions to be asked/answered in this field of research?

Since Staudinger proposed the concept of polymerization in 1920, generations of polymer chemists have spent considerable efforts to develop different kinds of polymerization methods, resulting in prosperous polymer science with abundant synthetic polymer materials in the forms of plastics, fibers, rubbers, etc. In comparison with previous polymerization methods, whether can Barbier polymerization survive throughout the history of polymer chemistry? How far can Barbier polymerization go? Whether can the prepared polymers via Barbier polymerization be recyclable? Whether is the concept of PIE applicable to other polymerization methods?

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Introducing the Polymer Chemistry Emerging Investigators Series

For many years Polymer Chemistry has showcased special collections dedicated to work carried out by researchers in the earlier stages of their research careers in our Emerging Investigator collections, most recently in our 2020 Emerging Investigators collection.

We hope that the polymer chemistry community has found these issues to be valuable, both in the high quality of the articles and in drawing attention to newer voices in the community. The journal editors and Editorial Board consider these to have been highly successful.

In light of disruption to research programmes worldwide, we have taken the opportunity to reassess the format of this initiative, and we are now excited to announce the launch of the Polymer Chemistry Emerging Investigators Series.

 

What is changing?

In place of a dedicated journal issue, Emerging Investigators papers will be published throughout the year. We anticipate the following benefits to this change:

  • No fixed submission deadlines allowing more flexibility for authors
  • Continual exposure of exciting work from early-career members of the community
  • Greater emphasis and focus on individual authors and research groups

We hope for this to offer a better service to our authors and readers well into the future.

 

What is not changing?

While we will no longer dedicate a specific journal issue to our Emerging Investigators, all other aspects of this initiative will remain the same. This includes:

  • Eligibility criteria (see below)
  • A dedicated web page for published articles alongside our other collections
  • Rigour and speed in peer review
  • An overall objective to showcase the full diversity of cutting-edge research carried out from polymer chemists in the early stages of their independent careers worldwide

 

What happens now?

The Polymer Chemistry Editorial Office will contact nominated Emerging Investigators throughout the year.

Regarding eligibility, contributors must:

  • Publish research within the journal scope
  • Currently be an independent research leader
  • Have not been featured as an Emerging Investigator in a previous Polymer Chemistry Emerging Investigators article
  • Have either no more than 12 years of post-PhD research experience in the year of submission when taking into account any career breaks

 

Do you fit the criteria above, and wish to be featured as an Emerging Investigator in the journal? Get in touch with us at polymers-rsc@rsc.org

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)