Archive for the ‘Emerging Investigators’ Category

Emerging Investigator Series – Maciek Kopeć

Maciek received his MEng degree in Polymer Chemistry and Technology from Cracow University of Technology in 2009, followed by a Ph.D. in Materials Science from Jagiellonian University and Polish Academy of Sciences in Krakow, Poland in 2014. During his Ph.D. he spent six months as a Fulbright Scholar at Carnegie Mellon University in Pittsburgh, PA working with Kris Matyjaszewski and Tomek Kowalewski, where he returned as a postdoc in 2014. From 2016 to 2018 he was a Research Fellow in the Materials Science and Technology of Polymers department at the University of Twente in Enschede, the Netherlands. Next, he spent three months at the University of Bristol in the UK before starting his current position as a Lecturer at the University of Bath in 2019. His research interests involve polymer gels/networks, degradable and reversible thermosets, controlled radical polymerisation, polymer topology, and polymer-derived carbon materials.

Read Maciek’s Emerging Investigator article, Strands vs. crosslinks: topology-dependent degradation and regelation of polyacrylate networks synthesised by RAFT polymerisation, DOI D3PY01008B.

 

Check out of interview with Maciek below:

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

I think it’s perfect. Polymer Chemistry is a go-to journal for any quality polymer research. This work felt particularly suitable as some of the Editors are pioneers in the field which guaranteed a thorough reviewing process.

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

When I started my independent research, our group focused mostly on crosslinked polymer systems, i.e., gels and networks which I didn’t have much previous experience with. I am still fascinated by the very fundamental aspects of these materials such as the mechanism of crosslinking in various polymerisation techniques or network topology.

In your opinion, what are the most important questions to be asked/answered in this field of research?

I think for degradable/recyclable polymers it is finding a compromise between degradability and stability necessary for successful translation of these materials into applications. In case of polymer networks more generally, there is still a lot we don’t know about their complex internal structure and how exactly it affects their physical properties.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Embrace teaching! It can be a great source of inspiration as well as a refreshing break from your research.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Zhanhua Wang

Zhanhua Wang received his doctorate in polymer chemistry and physics from Jilin University under the supervision of Professor Bai Yang in 2011. He worked as a postdoctoral fellow with Professor Marek Urban at the University of Southern Mississippi and Clemson University. He moved to Wageningen University as a postdoctoral researcher and worked with Professor Han Zuilhof until 2016. He is a professor at the Polymer Research Institute of Sichuan University. His scientific interests focus on bio-inspired anti-fouling coatings, covalent adaptive networks, self-healing and 3D printing of polymer materials.

Read Zhanhua’s Emerging Investigator article, Covalent adaptive networks with repairable, reprocessable, reconfigurable, recyclable, and re-adhesive (5R) performance via dynamic isocyanate chemistry, DOI D3PY00944K.

 

Check out our interview with Zhanhua below:

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

In my opinion, the topic about developing polymer materials with repairable, reprocessable, reconfigurable, recyclable, and re-adhesive (5R) performance via dynamic isocyanate chemistry quite fits the scope of the journal Polymer Chemistry since the dissociation mechanism on the isocyanate chemistry are discussed in detail in this review article.

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

What I am most excited about my work is my current study can make a contribution to develop sustainable polymer materials. The most challenging aspect about my current research is how to realize the industrialization of 5R polymer materials.

In your opinion, what are the most important questions to be asked/answered in this field of research?

The most important questions to be asked/answered in this field of my research is how to balance the 5R performance and the service stability and mechanical performance.

Can you share one piece of career-related advice or wisdom with other early career scientists?

In my opinion, it would be very difficult to engage in a new field, but after persisting for a period of time, you can continuously learn and grow in this process, and will definitely become an expert in this field.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Elizabeth Elacqua

Beth received her B.S. Degree in Chemistry and Biology from Le Moyne College where her research focused on the total synthesis of natural products. She spent a year at SUNY-Environmental Science and Forestry at the Michael Szwarc Polymer Research Institute, then went to the University of Iowa. Beth worked in the research group of Leonard R. MacGillivray, and received her Ph.D. in 2012. After graduation, Beth started as a Postdoctoral Research Associate at New York University working alongside Marcus Weck at New York University from 2013 – 2017. In 2017, she joined the faculty at Penn State. The Elacqua group works at the interface of organic synthesis and polymer chemistry, focusing on grand challenges that lie at the interface of the two fields, and has been supported by the Doctoral New Investigator Award of the ACS and the Alfred P. Sloan Foundation, along with an NSF Center of Chemical Innovation and NSF CAREER award. Beth’s work has also been recognized by the ACS Division of Organic Chemistry’s Young Academic Investigator Award and the ACS Division of Polymeric Materials: Science and Engineering Early Stage Investigator Award, along with the Rustum and Della Roy Materials Innovation Award at Penn State.

 

Read Beth’s Emerging Investigator article, Synthesis and characterization of a ruthenium-containing copolymer for use as a photoredox catalyst, DOI D3PY00428G

 

Read our interview with Beth below:

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

Our group works on a diverse array of research that spans over polymer chemistry, organic synthesis, and catalysis. We often feel that the broad readership of Polymer Chemistry comprises scientists that are interested in all aspects of our group’s work which is often centered in fundamental polymer synthesis and a little less on applications. Thus, it is often a perfect place to submit papers that we feel are exciting from an overall polymer perspective and we know the readership will benefit from these findings.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Honestly, all of our group’s main projects have been things that were not necessarily in my wheelhouse when I started academia. With that said, I think my advice would be to not shy away from learning new things that are exciting you and/or your group. New areas and directions can always be bolstered by collaborations and discussions with colleagues as well. It’s genuinely more fun to do the science that excites you and have that be boundless (within reason of course), then it is to feel limited by your background or exposure. 

 

Keep up to date with all of Beth’s research by going to her website or following her on X @beth_elacqua.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Junpeng Wang

Junpeng Wang received his B.S. in Chemistry from the University of Science and Technology of China in 2010 and his Ph.D. in Chemistry (advisor: Prof. Stephen Craig) from Duke University in 2015. He then worked with Prof. Luping Yu at the University of Chicago and Prof. Jeremiah Johnson at Massachusetts Institute of Technology as a Postdoc before joining the University of Akron as an Assistant Professor of Polymer Science in 2019. Currently, his research is focused on how molecular information like molecular structures and intermolecular and intramolecular interactions impact macroscopic material properties. In particular, Junpeng brought new insights into the design of sustainable polymers by applying physical organic chemistry and polymer mechanochemistry approaches.

Read Junpeng’s Emerging Investigator article, Bulk depolymerization of graft polymers based on trans-cyclobutane-fused cyclooctene, DOI D3PY00812F

 

Check out our interview with Junpeng below:

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

Polymer Chemistry is a journal that publishes solid work on innovative polymer chemistry research, and I am very pleased that our discovery on the bulk depolymerization of graft polymers can be published in Polymer Chemistry.  

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

I am actively working on solutions for sustainable polymers, and I am most excited that by applying principles in physical organic chemistry, we can bring new insights into the design of sustainable polymers. Sustainable polymers need to be competitive in properties and cost in order to replace current polymers. While my training allows me to study structure-property relationships to optimize material properties, I find it challenging to also take into account the cost and scalability. This is a grand challenge for the entire field of sustainable polymers, and I enjoy tackling the challenges.  

In your opinion, what are the most important questions to be asked/answered in this field of research?

How can we design polymers that show material properties comparable to current ones while having the potential for industrial production?

Can you share one piece of career-related advice or wisdom with other early career scientists?

There are many tasks for an us early career scientist, and some of them might not be so enjoyable. We need to make sure that we spend time on the things you are most excited about everyday so that we stay motivated. 

 

Keep up with Junpeng’s research by checking out his website or following him on X @JPChem1.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Annalisa Chiappone

Annalisa Chiappone is Assistant Professor in Industrial Chemistry in the Department of Chemical Science and Geology of the University of Cagliari since October 2021. With a background on materials engineering, she obtained her Ph.D. in Materials Science from Politecnico di Torino in 2012 with a Thesis on photocured polymer electrolytes membranes reinforced with natural fibers for Li-ion batteries. Afterwards, she moved to the Italian Institute of Technology, Center for Sustainable Future Technologies. She worked on the development of functional polymeric materials for different applications including sensors and materials for energy and electronics. In 2015 she moved her interests towards the development of smart formulations for 3D printing. In 2018, she moved back to Politecnico di Torino as researcher to set up a platform dedicated to 3D printing specifically focused on light activated reactions. She has now moved her research to the University of Cagliari where she is exploiting the chemistry facilities to improve the study on polymeric materials for advanced applications. Her interest are focused on photocurable polymers and light-induced 3D printing, she recently focused on the modification of natural polymers to make them suitable for 3D printing.

 

Read Annalisa’s Emerging Investigator article, Vat 3D printing of full-alginate hydrogels via thiol–ene reactions towards tissue engineering applications, DOI D3PY00902E

 

Check out our interview with Annalisa below:

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

Polymer Chemistry, with its high quality and reliability, is undoubtedly a prestigious journal for polymer scientists, as all RSC journals are for chemists. Furthermore, Polymer Chemistry is a journal with a broad readership, interested in polymer synthesis but also with an eye on processing and applications, thus it is a perfect journal to showcase our work that aims at optimizing easy modification processes to make natural polymers suitable for 3D printing in view of their biomedical application.

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

To be frank, since my academic studies, I have always been fascinated by polymer science and, still now, every new trial and every test that I do in my lab is something that excites me. So it’s hard to give a short answer to this question.

But, talking about my research, since 2015 I focused on the development of new materials for light-induced 3D printing. This processing technique is fascinating and can push the properties of materials to another level for their application in several fields. In the last years, we developed 3D printable polymers from natural sources, alginate is one example, to obtain 3D shaped hydrogels. The possibility to control the architecture of the hydrogels, maintaining the cytocompatibility of the natural polymers can help in making a step further in the biomedical field.

My new challenge is now the use of natural materials directly extracted from agri-food waste. Nature is a wiser chemist than us, and even waste can offer a large variety of molecules and polymers with fantastic properties, we just need to learn how to use to our best what we already have.

In your opinion, what are the most important questions to be asked/answered in this field of research?

The development of new material from waste is a topic that is gaining attention because we really need to enter in the mind-set of a greener chemistry. So, the question could be “How to do this in polymer chemistry?”. In my opinion the focus on waste valorization is a good start, but it’s not enough, I think that scientists must start looking at the impact of the whole processes that they develop, from extraction procedures to modification or synthesis and processing, each step must be as “green” as possible.

Can you share one piece of career-related advice or wisdom with other early career scientists?

What I have learned in the last years is the importance of good collaborations and good discussions with other scientists. Being able to listen to other’s ideas with a critical mind and discuss them, to build new projects, really helps in growing up as a scientist. And you never know, constructive ideas can come from somebody working in completely different environments and in other countries as well as from our office neighbour, you just need to communicate with an open mind.

Furthermore, it is also important to make the effort to talk with people working in different fields: even if sometimes it feels like talking in different languages, this can really open the eyes on different perspectives helping to have much better overview of your work.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Alex J. Plajer

Alex studied chemistry at the University of Heidelberg (B. Sc. 2015) and the University of Cambridge (M. Phil. 2016). As a Cambridge Trust Vice Chancellor scholar, he studied the supramolecular realm of main group chemistry under the supervision of Prof. D. S. Wright and received his PhD in 2020. After post-doctoral research supported by a Royal Commission for the Exhibition of 1851 research fellowship at the University of Oxford, he started his independent career at the Free University of Berlin in the fall of 2021 as a Liebig fellow. In 2024 he will move to the University of Bayreuth to take up an appointment as a tenure track Junior Professor. His work is concerned with the development of synthetic methodologies for new functional and degradable polymer backbones. Find out more about his work on Twitter/X @AJPlajer or on www.agplajer.com.

Read Alex’s open access Emerging Investigator article, Ring-opening terpolymerisation of phthalic thioanhydride with carbon dioxide and epoxides, DOI D3PY01022H.

 

Read our interview with Alex below:

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

Polymer Chemistry really stands out as a platform for publishing our research. One of its notable strengths lies in its expeditious publication process, ensuring that our findings reach the scientific community in a timely manner, which is vital for a young research group given the various age deadlines we face. We also found that having scientific editors who are experts in the field contributes to the peer-review process as they also make valuable scientific suggestions and never fail to pick reviewers that teach us how to improve the quality of our work.

 

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

As a synthetic inorganic chemist by training who didn’t know what a DSC was until the last months of his Postdoc, I find great excitement in delving into the material properties of the polymers we prepare. It’s particularly intriguing to investigate how these properties evolve when transitioning to polymers incorporating heavier elements like sulfur offering a fresh perspective on the potential applications of our creations.

One of the hurdles I face as a young Principal Investigator is not doing much experimental work anymore. Nonetheless, I remain optimistic about the possibility of returning to the fume hood in the future (or as we say in German: “Die Hoffnung stirbt zuletzt”)!

 

Can you share one piece of career-related advice or wisdom with other early career scientists?

To be open to accept help and advice from everyone.

 

 

To find out more about his work, follow Alex on on Twitter/X @AJPlajer or check out his lab’s web page.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Mintu Porel

Dr. Mintu Porel is an Associate Professor in the Department of Chemistry and Environmental Sciences and Sustainable Engineering Center, Indian Institute of Technology Palakkad, Kerala, India. After receiving her M.Sc. from Indian Institute of Technology Delhi, India, she joined University of Miami, Florida, USA for the Ph.D. program. She completed her Ph.D. on Organic Supramolecular Photochemistry in 2012. Thereafter, Dr. Porel moved to Columbia University, New York, USA for her first postdoctoral work and Cornell University, New York, USA for her second postdoctoral work. In September 2017, Dr. Porel joined the Department of Chemistry, Indian Institute of Technology Palakkad as an Assistant Professor. Her research work is focused on the design and synthesis of novel classes of tuneable organic macromolecules and their applications in material and biomedical sciences.

Read Mintu’s open access Emerging Investigator article, Water soluble non-conjugated fluorescent polymers: aggregation induced emission, solid-state fluorescence, and sensor array applications, DOI D3PY00357D.

 

Read our interview with Mintu below:

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

Publishing in Polymer Chemistry has been a positive experience for us. The journal has a broad readership, which means that the published work can reach a wide audience of researchers and professionals in the field. Furthermore, Polymer Chemistry covers a wide range of topics within polymer science, so it is suitable for research across different aspects of polymer chemistry, including synthesis, characterization, properties and applications. This versatility makes it a suitable choice for publishing diverse interests within the polymer science and macromolecular chemistry.

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

Our group is focussed on the design, synthesis, and applications of novel classes of organic macromolecules. In contrast to the small molecules, macromolecules have some unique properties that make them perfect fit for various applications which are otherwise challenging to meet. The immediate next goal is to get a hand on controlling the properties of the macromolecules which is crucial for making them an efficient candidate for a given application. The novelty of our system is that we can precisely control on how various functional groups are arranged in a macromolecule or polymer to produce its on-demand structure, characteristics, and function. Our team is ambitious to create a platform for the rapid and affordable synthesis of materials with tuneable properties for a wide range of applications, from material to biomedical research which is indeed a challenge.

In your opinion, what are the most important questions to be asked/answered in this field of research?

The most important question to be asked, in our opinion, is how polymers can be engineered for cutting-edge uses in applications like energy storage, packaging, biomaterials, and electronics, and how can the molecular weight, structure, and architecture of polymers be regulated.  Also, in order to satisfy various commercial and scientific demands, how can we create polymers with diverse functionalities, and understand its role in tuning properties at the macromolecular level and how that can be modulated to cater diverse applications in material and biomedical fields.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Regardless of the specific field, researchers should embrace a growth mindset and consider challenges as opportunities. Also, building a solid professional network is important and has big impact on your professional development and opportunities.

 

Find more about Mintu’s research on her lab’s website

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Sankarasekaran Shanmugaraju

Sankarasekaran Shanmugaraju is an Associate Professor of Chemistry at the Indian Institute of Technology Palakkad (IITPKD), Kerala, India. He received his Ph.D. degree in 2013 with a gold medal for the best Ph.D. thesis in Inorganic Chemistry from the Indian Institute of Science (IISc), Bengaluru. He then moved to Trinity College Dublin, Ireland as an Irish Research Council (IRC) Postdoctoral Fellow. In October 2018, he commenced his independent position as an Assistant Professor of Chemistry at IITPKD. The main objective of his group’s current research activities is “the rational design and synthesis of novel structures, smart materials, and functional porous polymers for applications in sustainable energy, environment, and biomedicine”.

 

Read Sankarasekaran’s open access Emerging Investigator article Tröger’s base-containing fluorenone organic polymer for discriminative fluorescence sensing of sulfamethazine antibiotic at ppb level in the water medium, DOI D3PY00857F.

 

Check out our interview with Sankarasekaran below. 

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

Polymer Chemistry is a wonderful platform to showcase research from polymer and macromolecular chemistry. My experience so far has been very pleasant working with Polymer Chemistry. The review process was smooth and the editorial team was very helpful during our paper submission.

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

We are interested in the design and synthesis of functional organic and hybrid polymers for applications in fluorescence-based sensing and adsorptive removal of environmental pollutants and contaminants. The most exciting thing about our work is the easy design and facial modulation of the functional properties of polymers. The synthesis of targeted polymer with desired properties and superior materials properties is often challenging. 

In your opinion, what are the most important questions to be asked/answered in this field of research?

The most important question to be asked in this field is how the structure, texture, and functional properties of polymeric materials can be tuned toward real-world applications. How can the sensing and adsorption properties can be modulated to develop efficient molecular adsorbents?

Can you share one piece of career-related advice or wisdom with other early career scientists?

Identify unique research problems and explore them. The field of polymer chemistry has limitless opportunities to unveil.

 

Find out more about Sankarasekaran’s research on his faculty webpage

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Leena Nebhani

Leena studied Chemistry at the University of Rajasthan and Polymer Science & Technology at the Indian Institute of Technology Delhi, India. She completed a PhD in Polymer Chemistry in 2010 from the Karlsruhe Institute of Technology (KIT), Germany. She has received several awards and scholarships during her studies, including a DAAD scholarship to undertake a Master thesis at the Technical University Dresden, Germany, and a Faculty of Engineering Scholarship from the University of New South Wales, Sydney, Australia. After the completion of her PhD, she worked as a Senior Scientist from 2011 till 2015 at the Goodyear Tire & Rubber Company, USA. In 2015, Leena joined the Indian Institute of Technology Delhi (IITD) as an Assistant Professor where she has been promoted to Associate Professor in 2020. She received a Faculty Research Award in the Early Career Category (2020) from Indian Institute of Technology Delhi for her contributions in functionalized porous materials. She has served as an Academic Editor at PLOS One since August 2018. She is an expert committee member in several panels at the Department of Science and Engineering, India as well as served as a reviewer for several international peer-reviewed high impact journals, for example, ACS Sustainable Chemistry & Engineering, Polymer Chemistry, Journal of Materials Chemistry B, etc. Since she joined IITD, she has been a frequent visiting academic at Australian Universities, including University of New South Wales and University of Sydney. She has been collaborating with eminent researchers based in India, USA, Germany, Australia, and Taiwan.

 

Read Leena’s Emerging Investigator article Polymer grafting on nitrone functionalized green silica via “grafting from” and “grafting to” approaches through enhanced spin capturing polymerization and a 1,3-dipolar cycloaddition reaction, DOI D3PY00712J.

 

Check out our interview with Leena below:

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

Polymer Chemistry is one of the premier journals to publish research work directed towards polymer synthesis, its mechanism and application. For the currently published manuscript, Polymer Chemistry was my first choice for submission and we are grateful to the Editor and reviewers for finding the work suitable for publication in Polymer Chemistry. I am very lucky to have hard a working graduate student like Lukkumanul Hakkim N. This is the first Polymer Chemistry publication from my group, Surface and Macromolecular Chemistry Laboratory, and we are wishing for many more.

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

The most exciting and challenging part of my research is to design scalable hybrid materials through the combination of nanomaterials and polymers for a wide variety of applications.

Can you share one piece of career-related advice or wisdom with other early career scientists?

If you really want something, be patient and work towards it. I have waited 13 years to get my first Polymer Chemistry publication, which was a dream since I was a graduate student when the Polymer Chemistry journal was launched in 2010.

 

Find out my about Leena’s research on her lab’s web page or follow her on LinkedIn or twitter @Nebhani_IITD.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Maxwell J. Robb

A photo of Max Robb.
Max was born and raised in Colorado and obtained his B.S. in Chemistry from the Colorado School of Mines where he began research in synthetic polymer chemistry under the guidance of Prof. Daniel M. Knauss. After graduating in 2009, Max carried out his Ph.D. studies in the laboratories of Prof. Craig J. Hawker at the University of California, Santa Barbara.  His doctoral research focused broadly on the synthesis of functional organic materials and was recognized by the American Chemical Society with the 2016 Henkel Award for Outstanding Graduate Research in Polymer Chemistry. Max conducted postdoctoral work with Prof. Jeffrey S. Moore at the University of Illinois, Urbana-Champaign as a Beckman Institute Postdoctoral Fellow prior to joining the Division of Chemistry and Chemical Engineering at Caltech as an Assistant Professor of Chemistry in September 2017.  Research in the Robb group seeks to advance the fundamental understanding of mechanical force transduction at the molecular level and develop strategies to create force-responsive molecules and functional materials. The group’s research has been recognized by a number of awards including the Beckman Young Investigator award, Sloan Research Fellowship, NSF CAREER award, Camille Dreyfus Teacher-Scholar award, Rose Hills Foundation Innovator Award, and the PMSE Young Investigator award.

 

Read Max’s Emerging Investigator Series article, Mechanochemical reactivity of a multimodal 2H-bis-naphthopyran mechanophore, DOI: D3PY00344B.

 

Check out Max’s thoughts on the future directions for his field of research below:

 

In your opinion, what are the most important questions to be asked/answered in this field of research?

The ability to design polymers that distinguish between different stress states through discrete visual cues will enable new opportunities for stress sensing. However, this type of behavior is still relatively rare in soft materials.  

 

Keep with Max’s research and the latest news from his lab by following him on twitter @maxwell_robb and @therobbgroup, or check out his lab’s website.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)