Archive for the ‘Chemistry World’ Category

Chemical weapons trapped the swell way

UK researchers have shown that polymers can absorb chemical warfare agents. When dried, the densely crosslinked polystyrene networks can swell to accommodate organic molecules. They can therefore act not just as universal sorbents for soaking up a wide range of chemicals, but also as a new way to decontaminate stockpiles of chemical weapons.

 

Source: © Royal Society of Chemistry
Reaction used to prepare the hypercrosslinked polymer networks



Read the full story by Hugh Cowley in Chemistry World.


This article is free to access until 26 April 2017.

C Wilson et al, Polym. Chem., 2017, DOI: 10.1039/c7py00040e

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Spare a penny for your polymers

Scientists in the UK have discovered that a one-penny coin can catalyse polymerisations. The penny not only made the reaction start faster than the commonly used copper wire catalyst, but could also produce up to 50g of polymer in one batch.

Source: Royal Society of Chemistry

Source: Royal Society of Chemistry

Single electron transfer living radical polymerisation is one of the most used reactions to produce everyday polymers such as polystyrene and acrylics. Polymerisation reactions need a catalyst to get them started – copper wire being the most common one. However, pure copper’s high cost can be restrictive.

To read the full article visit Chemistry World.

R. Aksakal, M. Resmini and C. R. Becer
Polym. Chem., 2016, Advance Article
DOI: 10.1039/C6PY01295G, Communication
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Camel hair shows shape memory

Camel hair as smart material

The unusual shape memory properties in animal hair could be a basis for the development of new smart materials.

Read the full story by Emma Cooper in Chemistry World

This article is free to access until 10 October 2016

X Xiao et al.Polym. Chem., 2016, DOI: 10.1039/C6PY01283C

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

3D printing enters the next dimension

Scientists in the US have added a new dimension to 3D printing with a strategy that controls the chemical composition of printed features, as well as their three-dimensional position.

The University of Miami team’s setup allows controlling both 3D position and monomer composition of a photopolymerisable mixture

With 3D printing systems becoming more mainstream, platforms that overcome their current limitations are increasingly relevant. Ideally, they should print different polymers close together, independently control their position and be compatible with delicate organic and biologically active materials.

To read the full article please visit Chemistry World.

Optimization of 4D polymer printing within a massively parallel flow-through photochemical microreactor
Xiaoming Liu, Yeting Zheng, Samuel R. Peurifoy, Ezan A. Kothari and Adam B. Braunschweig �
Polym. Chem., 2016, Advance Article
DOI: 10.1039/C6PY00283H, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymers curl up and take control

Scientists in Germany have successfully collapsed single polymer chains into dense nanoparticles, to make single-chain nanoparticles, by adding palladium.1 The nanoparticles mimic enzymatic pockets with defined environments around their metal centres and can catalyse a carbon coupling reaction.

The intramolecular crosslinking process creates single-chain nanoparticles that catalyse a Sonogashira coupling reaction

Enzymes use their carefully shaped reaction cavities to selectively catalyse organic reactions. Industrial processes crave selectivity, but also demand straightforward procedures. Synthesising and separating enzymes in practical quantities is, however, tricky, so they aren’t always suitable for industry. One solution to this might be single-chain nanoparticles, which have recently become a hot topic in the field of polymer chemistry.2 Their applications range from sensing to recognition, and medicine to catalysis, but only a few groups have studied their synthesis and even fewer have looked at the introduction of metals.

To read the full article visit Chemistry World.

Pd-complex driven formation of single-chain nanoparticles
Johannes Willenbacher, Ozcan Altintas, Vanessa Trouillet, Nicolai Knöfel, Michael J. Monteiro, Peter W. Roesky and Christopher Barner-Kowollik
Polym. Chem., 2015, Advance Article
DOI: 10.1039/C5PY00389J, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)