Author Archive

Lectureship winner featured on our back cover

We are immensely proud to share our back cover for Issue 40.

This beautiful image highlights research results by Professor Feihe Huang at University, Hangzhou, China. Professor Huang is the recipient of the 2016 Polymer Chemistry Lectureship award.

Pillar[5]arene-based amphiphilic supramolecular brush copolymers: fabrication,
controllable self-assembly and application in self-imaging targeted drug delivery

Guocan Yu, Feihe Huang, and co-workers fabricated the first pillar[5]arene-based amphiphilic supramolecular brush copolymer, which was utilized as a self-imaging drug delivery vehicle by taking advantage of the aggregation-induced emission effect.

In vitro and in vivo investigations demonstrated this supramolecular theranostic nanomaterial exhibited excellent antitumor efficacy with negligible systemic toxicity.

Read the full article

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

In celebration of the 2016 Nobel Prize in Chemistry

The 2016 Nobel Prize in Chemistry was jointly awarded to Jean-Pierre Sauvage, Sir J. Fraser Stoddart and Bernard L. Feringa for their work on the design and synthesis of molecular machines.

Developing the world’s smallest machines: Jean-Pierre Sauvage, Fraser Stoddart and Bernard Feringa

Jean-Pierre Sauvage took the first step towards a molecular machine in 1983, when he successfully  linked two ring-shaped molecules together to form a chain, called a catenane. The molecules in this chain are linked by a mechanical bond, allowing the two interlocked rings to move relative to each other, performing like a tiny machine.

Fraser Stoddart took the second step in 1991, when he developed a rotaxane by threading a molecular ring onto a thin molecular axle. The ring is able to move along the axle enabling a number of developments such as a molecular lift, a molecular muscle and a molecule-based computer chip.

Bernard Feringa took the third step by developing the first molecular motor in 1999 when he got a molecular rotor blade to spin continually in the same direction. Using molecular motors, he has rotated a glass cylinder that is 10,000 times bigger than the motor and also designed a nanocar!

The ground breaking steps taken by the 2016 Nobel Laureates in Chemistry in developing molecular machinery have resulted in a toolbox of chemical structures that can be used by researchers around the world to build anything from artificial switches and release-targeted drugs to novel energy storage systems!

To celebrate these remarkable achievements, we are delighted to present a collection of recent Soft Matter and Polymer Chemistry articles on molecular machines FREE to read until 1 December 2016!

We invite you to submit your best research related to molecular machines to Soft Matter and Polymer Chemistry!


Reviews
Integrated motion of molecular machines in supramolecular polymeric scaffolds
Xuzhou Yan, Bo Zheng and Feihe Huang
Polym. Chem., 2013, 4, 2395-2399
DOI: 10.1039/C3PY00060E

Research articles
Topological energy storage of work generated by nanomotors
Fabian Weysser, Olivier Benzerara, Albert Johner and Igor M. Kulić
Soft Matter, 2015, 11, 732-740
DOI: 10.1039/C4SM02294G

Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: model and experiment
Longqiu Li, Jiyuan Wang, Tianlong Li, Wenping Song and Guangyu Zhang
Soft Matter, 2014, 10, 7511-7518
DOI: 10.1039/C4SM01070A

Construction of muscle-like metallo-supramolecular polymers from a pillar[5]arene-based [c2]daisy chain
Lingyan Gao, Zibin Zhang, Bo Zheng and Feihe Huang
Polym. Chem., 2014, 5, 5734-5739
DOI: 10.1039/C4PY00733F

An acid/base switchable and reversibly cross-linkable polyrotaxane
Shijun Li, Guan-Huan Weng, Wei Lin, Zhi-Bin Sun, Mi Zhou, Bin Zhu, Yang Ye and Jing Wu
Polym. Chem., 2014, 5, 3994-4001
DOI: 10.1039/C4PY00409D

Dual stimuli-responsive supramolecular pseudo-polyrotaxane hydrogels
Lipeng Zhou, Jiaxi Li, Quan Luo, Junyan Zhu, Huixin Zou, Yuzhou Gao, Liang Wang, Jiayun Xu, Zeyuan Dong and Junqiu Liu
Soft Matter, 2013, 9, 4635-4641
DOI: 10.1039/C3SM27776C

pH-responsive dendritic polyrotaxane drug-polymer conjugates forming nanoparticles as efficient drug delivery system for cancer therapy
Yang Kang, Xiao-Mei Zhang, Sheng Zhang, Li-Sheng Ding and Bang-Jing Li
Polym. Chem., 2015, 6, 2098-2107
DOI: 10.1039/C4PY01431F

Phototriggered supramolecular polymerization of a [c2]daisy chain rotaxane
Xin Fu, Rui-Rui Gu, Qi Zhang, Si-Jia Rao, Xiu-Li Zheng, Da-Hui Qu and He Tian
Polym. Chem., 2016, 7, 2166-2170
DOI: 10.1039/C6PY00309E


Also of interest: Find out more about the three Chemistry Nobel Laureates and their research.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

European Biopolymer Summit 2016

Biopolymers Europe will be taking place in London, UK, on the 7th & 8th December 2016. The two-day event has been designed with the key objective of uniting collaborations across the entire bioplastic value chain to come together to learn more about the innovations emerging in a host of markets as biopolymers begin to play a broader role in multiple sectors.

It also provides a unique platform to present and discuss the most recent innovations, trends, and concerns as well as getting involved in practical challenges, solution strategies and problem-solving for the road ahead. With a strong emphasis on the increasing role of a harmonious strategy, this event has been designed to facilitate the action that is needed to plan ahead for forthcoming obstacles within the industry.

Key Topics:

  • The Biobased Economy – Meeting the Needs of All Parties: Achievements & Obstacles
  • Where is Environmental Policy Going?
  • How to stay in the UK Market in a post- Brexit world?
  • Growing Global Biobased Markets: Blends, Applications, Limitations & Bio Refining
  • Biodegradable & Biobased Materials Development: Lessons Learned and Preparing for Future Challenges (practical strategy building)
  • Next Generation Polymers: Biopolymers with Advanced Functionalities for High-Performance Applications
  • Future Perspectives and Advances in Processing & Application of Polymers
  • Polymer Fundamentals: the Best Performing Features of the Design and Properties of Biodegradable Polymers
  • Pioneering New Processes & Technologies
  • Emerging Polymer Technologies: Nanotechnology for Bioplastics: Opportunities, Challenges & Strategies
  • Emerging Polymer Technologies: Transformational potential of 3D printing and Nanotechnology
  • Applications and Commercialization of Biopolymers
  • The Retailer Interview: Retailer Perspective on Biobased Products
  • Sustainability Programmes & Composting Infrastructure: Bridging the Gap Between Interest & Action
  • Life Cycle Assessment
  • Scaling Up Smartly and Overcoming Barriers for Investments

Please see a copy of the full agenda.

For more information and to register your attendance, please contact Mohammad Ahsan and quote booking reference CBCe4MKT on +44 (0) 203 141 0606 or email mahsan@acieu.net.



UPDATE: The venue has just been announced! The conference will be hosted by the Hotel Pestana Chelsea Bridge. Please check out the flyer for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Advisory Board Top Picks: Franck D’Agosto

Franck D’Agosto is a member of Advisory Board for Polymer Chemistry and CNRS research director at the University of Lyon in the group of Chemistry, Catalysis, Polymers and Processes (C2P2). D’Agosto’s research focuses on implementing original and simple chemistries to control the architecture of polymers both in the field of polyolefins and in aqueous dispersed media.

Work published almost 40 years ago exploited the livingness of poly(t-butyl styryl)-lithium chains to initiate the dispersion polymerization of styrene (St) or divinylbenzene in n-hexane, and indeed pioneered the concept of what is today called polymerization-induced self-assembly (PISA). Starting from hydrophilic polymers prepared by reversible-deactivation radical polymerization, emulsion or dispersion polymerization can now be conducted in water to generate block copolymer particles by PISA. Although PISA has not replaced conventional surfactant-containing emulsion polymerization in producing industrial-scale polymer latexes, it has rapidly evolved into a versatile tool capable of producing amphiphilic block copolymers directly in water at high solids contents and various micellar architectures in the absence of added cosolvents. PISA is now a mature topic for which scientists are investigating new uses.

You can find all Advisory Board’s Top Picks papers in our web collection.



Focus on polymerisation-induced self-assembly (PISA)

1. Synthesis of zwitterionic, hydrophobic, and amphiphilic polymers via RAFT polymerization induced self-assembly (PISA) in acetic acid
D. Das, D. Gerboth, A. Postma, S. Srinivasan, H. Kern, J. Chen, D.M. Ratner, P.S. Stayton, A.J. Convertine, Polym. Chem., 2016, DOI:10.1039/C6PY01172A.

By Dr. Ming Liang Koh. Ming obtained his PhD at the University of Sydney. Following a postdoctoral position at the University of Warwick, he is currently researching hybrid inorganic-organic latexes in the group of C2P2 at the University of Lyon.

While PISA has quickly matured as a topic, fundamental research still plays an important role to further widen opportunities. In this study, Das et al. considered the difficulty in marrying the poor solubility of hydrophobic monomers in aqueous media with the poor solubility of zwitterionic polymers in organic solutions.

This is often the dilemma encountered when one wants to incorporate prodrug monomers with hydrolytically unstable linkages into a polyionic scaffold. RAFT polymerizations of a hydrophilic sulfobetaine monomer (2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate, DMAPS) and hydrophobic lauryl methacrylate (LMA) was then considered in acetic acid using solvophilic macroRAFT composed of hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) methyl ether methacrylate (O300). Well-defined amphiphilic block copolymers were produced using PISA.

This was successfully applied to copolymerizations of DMAPS with LMA and/or other biorelevant hydrophobic methacrylates incorporating hydrolytically sensitive links that were successfully preserved in a poly(DMAPS) scaffold. The preparation of macrophage targeting mannose-functionalized solvophilic macroRAFT also allowed the design of original polymeric prodrug nanoparticles.


2. Synthesis, characterisation and Pickering emulsifier performance of poly(stearyl methacrylate)–poly(N-2-(methacryloyloxy)ethyl pyrrolidone) diblock copolymer nano-objects via RAFT dispersion polymerisation in n-dodecane
V. J. Cunningham, S. P. Armes and O. M. Musa, Polym. Chem., 2016, 7, 1882–1891

By Dr. Samuel Pearson. After obtaining his PhD in Australia, Sam completed a postdoctoral position in C2P2 group at the University of Lyon and is currently a Marie Curie individual fellow at the University of Pau. His research interests include light-responsive polymers, self-assembly systems, and polymer/inorganic nanohybrids.

The Armes group has been pivotal in developing novel PISA systems, and this latest paper in Polymer Chemistry exploits PISA-derived nanospheres as Pickering emulsifiers with a surprising twist. A stearyl methacrylate-based macroRAFT agent was chain extended in n-dodecane with N-2-(methacryloyloxy)ethyl pyrrolidone – a more polar core-forming monomer than previously employed by the authors – to give very fast polymerisation and a typical range of self-assembly morphologies captured in a detailed phase diagram.

Using low shear mixing, the spherical nano-objects proved effective as Pickering stabilisers for water-in-oil emulsions, as expected for such hydrophobic particles. At high shear, however, entirely unexpected behavior was observed: the particles inverted to give hydrophilic nanospheres stabilising oil-in-water emulsions, presenting a new puzzle and new opportunities in PISA research.



3. Room temperature synthesis of poly(poly(ethylene glycol) methyl ether methacrylate)-based diblock copolymer nano-objects via Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA)
J. Tan, Y. Bai, X. Zhang and L. Zhang, Polym. Chem., 2016, 7, 2372–2380.

By Dr. Winnie Nzahou Ottou. Winnie is a post-doctoral research fellow at the University of Lyon in the group of C2P2. Her research focuses on catalytic olefin polymerization and the design of new functionalized polyolefins through both in situ reactions and post-polymerization modifications.

In this study, Tan, Zhang et al. report the photoinitiated polymerization-induced self-assembly (photo-PISA) of 2-hydroxypropyl methacrylate (HPMA) using poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMA) as macro-RAFT agents at 25 °C in water.

By a simple “ON/OFF” switch of the light source and by tuning the reaction parameters (e.g. solids content, degree of polymerization and molecular weight of the macro-RAFT agent), a series of PPEGMA-b-PHPMA diblock copolymer nano-objects with controllable morphologies (worms, spheres, and vesicles) were thus obtained. Interestingly, PPEGMA14-PHPMA200 nanoparticles (15% w/w) were found to exist as a soft physical worm gel at 25 °C and changed to spheres at 4 °C.

However, this transformation was irreversible presumably due to the effective steric stabilization effect of PPEGMA on the PHPMA-based nanoparticles. Zhang and coworkers then expand the scope of photo-PISA for the synthesis of various block copolymers nano-objects, and also provide an efficient method for making a new class of light and thermo-responsible biomaterials.



4. Surface-initiated polymerization-induced self-assembly of bimodal polymer-grafted silica nanoparticles towards hybrid assemblies in one step
Y. Zheng, Y. Huang, Z. M. Abbas and B. C. Benicewicz, Polym. Chem., 2016, 7, 5347–5350.

By Dr. Arne Wolpers. Arne obtained his PhD in Germany and is currently a postdoctoral researcher at the University of Lyon in the group of C2P2. His research focuses on the polymerization of ethylene using reversible-deactivation radical-polymerization (RDRP) techniques under mild conditions and the further processing of polyethylene.

With their great expertise on polymer nanocomposites, researchers of the Benicewicz group demonstrated the first case of surface-initiated polymerization-induced self-assembly (SI-PISA) of nanoparticles, offering a facile and efficient one-step procedure to prepare hybrid assemblies.

In this context, rather than performing conventional chain-extension, by utilizing a surface-immobilized RAFT agent, silica nanoparticles grafted from with solvophilic poly(2-hydroxyethyl methacrylate) (PHEMA) were successively grafted from for a second time in methanol with solvophobic poly(benzyl methacrylate) (PBzMA). The growth of PBzMA was well-controlled and with increasing molar mass, the nanoparticles assembled into a variety of one-dimensional structures.

The obtained assemblies were very stable and exhibited high nanoparticle concentrations. The manifold possibilities to tune the presented system and thus the formed hybrid structures indicate the potential of SI-PISA as a powerful new tool in the field of polymer nanocomposites.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Top 10 Reviewers for Polymer Chemistry

In celebration of Peer Review Week, with the theme of Recognition for Review, we would like to highlight the top 10 reviewers for Polymer Chemistry in 2016, as selected by the editor for their significant contribution to the journal.

Top 10 Reviewers for Polymer Chemistry:
– Dr Fujian Xu – BUCT, China
– Dr Xiaoyu Huang – Shanghai Institute of Organic Chemistry, China
– Dr Feihe Huang – Zhejiang University, China
– Dr Priyadarsi De – Indian Institute of Science Education and Research, Kolkata, India
– Dr Youliang Zhao – Soochow University, China
– Dr Jingyin Yuan – Tsinghua University, China
– Dr Cyrille Boyer – University of New South Wales, Australia
– Dr Athina Anastasaki – University of California, Santa Barbara, USA
– Dr Leyong Wang – Nanjing University, China
– Professor Zhen Li – Wuhan University, China

We would like to say a massive thank you to these reviewers as well as the Polymer Chemistry board and all of the polymer chemistry community for their continued support of the journal, as authors, reviewers and readers.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

5th Zing Polymer Chemistry Conference

We are proud to announce the 5th Zing Polymer Chemistry Conference will take place in Dublin (Ireland).

The field of polymer chemistry has experienced a renaissance over the last few last years with the discovery of novel mechanisms to control polymer structure, molecular weight, and functionality. Moreover, the preparation of new polymeric materials with stimuli-responsive or dynamic characteristics have led to novel biomedical materials, polymers for electronic applications, and many other advanced materials. Indeed, polymer science is more exciting than ever before.

This conference will be held 5th – 8th August 2016 and will feature recent developments in the area of polymer synthesis and applied science and intends to gather researchers interested in the forefront polymer science and its future applications.

Several Editorial Board members of Polymer Chemistry will be attending:

Eva M. Harth (Vanderbilt University): Conference Chair
David M Haddleton (University of Warwick): Plenary speaker with the talk ‘Sulfur free RAFT in emulsion for multi-block copolymer synthesis
Emily B. Pentzer (Case Western Reserve University): Invited speaker with the talk ‘Polymerization of Silyl Ketenes
Masami Kamigaito (Nagoya University): Invited speaker with the talk ‘New Developments in Controlled Radical and Cationic Polymerizations

We look forward to welcoming you for the 5th Zing Polymer Chemistry Conference!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

JEPO 2016 Congress

The JEPO 2016 congress enables young researchers in polymer science to present and share their work with their peers (young and senior colleagues) in a privileged environment.

The 44th edition of the French Journées d’Etudes des Polymères will take place on the seaside at the VVF “Le Moulin de Praillane” at Piriac-sur-Mer from 19-23 September 2016

The congress in open to any contribution related to polymer science, ranging from synthesis and physico-chemical properties to applications, and from industrial and academic background.

The event will consist of seven invited conferences from renowned academic and industrial English and French scientists (45 min) and oral contributions from the congress participants (20 min). The language of the congress will be English.

Registration dates:

  • Early bird registration period: 1 February – 30 April 2016
  • Regular registration period: 4 April – 30 July 2016

Submission dates:

  • Abstract submission opens: 4 April 2016
  • Abstract submission deadline: 24 June 2016
  • Acceptance notification: 30 June 2016

Mark your calendar today and register now!


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Investigation into the photolytic stability of RAFT agents and the implications for photopolymerization reactions

McKenzie et al. report the stability of a wide range of RAFT agents during photopolymerization.

The use of external stimuli to mediate the polymerization process has recently received significant attention with light being one of the most popular stimuli mainly due to its natural abundance and the possibility for spatiotemporal control. Photopolymerizations involving reversible addition fragmentation chain transfer (RAFT) have been widely investigated and studied exhibiting impressive characteristics such as fast reaction rates, good spatiotemporal control, and high-end group fidelity.

However, a report on the stability of these RAFT agents has been clearly missing from the literature. Qiao and co-workers recently discovered an initiator-free photopolymerization where the RAFT agent is activated by a blue LED. Following this work, they have investigated the photolytic stability of a range of RAFT agents under blue light irradiation. Careful NMR studies regarding the initiation process and the induction period revealed that the photopolymerization reaction is strongly dependent on the structure of the employed trithiocarbonates (TTCs).

Degradation studies under polymerization relevant conditions showed that photolytic degradation of TTCs with more labile R-groups is observable within the reaction time scale up to 12% for a cyanosubstituted tertiary fragmenting group. On the contrary, when less stable (i.e. primary and secondary) R-group-derived radicals are employed, no degradation is detected.

Two main conclusions can be derived from these studies. Firstly, under identical photochemical conditions, the polymerization of acrylates will lead to higher end group fidelity polymers when compared to the polymerization of methacrylates. In addition, the induction period is dependent on the ability of the RAFT agent to fragment photolytically. As such, this work significantly contributes towards the understanding of the RAFT mechanism and side reactions during photopolymerization processes.

Tips/comments directly from the authors:

  1. The rate of photolysis, although demonstrated here under blue light irradiation (λmax ~ 460 nm) of constant intensity (ca. 1.5 mW/cm2), is likely strongly dependent on both the wavelength and intensity of the employed light source.
  2. Less stable (i.e. faster fragmenting) RAFT agents can be used with acrylate type monomers with minimal degradation due to conversion of the fragmenting species from tertiary to secondary during initiation.
  3. The rate of photopolymerization is also dependent on the initial RAFT agent concentration, and hence the targeted degree of polymerization.
  4. Trithiocarbonates are also more hydrolytically stable than many dithiobenzoates, so these photopolymerization reactions are also amenable to aqueous reaction conditions.



Read this exciting research for free until 31/08/2016 through a registered RSC account:

Investigation into the photolytic stability of RAFT agents and the implications for photopolymerization reactions
T. G. McKenzie, L. P. da M. Costa, Q. Fu, D. E. Dunstan and G. G. Qiao
Polym. Chem., 2016, 7, 4246-4253
DOI: 10.1039/C6PY00808A

—————-

About the webwriterAthina Anastasaki

Dr. Athina Anastasaki is a web writer for Polymer Chemistry. She is currently an Elings fellow working alongside Professor Craig Hawker at the University of California, Santa Barbara (UCSB).

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Warwick Polymer Conference 2016

Warwick Polymer Conference 2016 is the premier conference on polymer chemistry, which focus on the chemical synthesis and chemical properties of polymers.

Held 11–14 July 2016 in Warwick, UK, this year’s conference is the fourth in their series of international polymer chemistry meetings and the largest so far with almost 600 delegates. The program is designed for all to spend social time as well as scientific time.

Polymer Chemistry proudly sponsors this conference, which will feature a number of lectures by both established researchers from across the globe and early-career scientists who are making recent, novel contributions. Contributed oral and poster presentations will also add to the mix.

Mark your calendar today and register now!


Executive Editor, Polymer ChemistryMeet the team:

Dr Neil Hammond (Executive Editor of Polymer Chemistry) will be attending the event. He would love to hear about your research and meet with our readers, authors and referees. Please do get in touch with Neil if you would like to arrange a meeting in advance.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)