Archive for June, 2019

Paper of the month: Hierarchical patterns with sub-20 nm pattern fidelity via block copolymer self-assembly and soft nanotransfer printing

Nanotransfer printing is a technique often used to construct complex patterns by employing elastomeric stamps and relying on surface chemistries. This has enabled not only the assembly of complex constructs but also the effective integration of heterogeneous materials. In the current manuscript, Campos and co-workers significantly contributed to this direction by introducing a nanotransfer technique, termed soft pattern-transfer printing, which does not rely on adhesive layers or external stimuli. As a result, a cost and time efficient high throughput processing platform is being developed. To achieve this, representative organic thin films of P3HT homopolymers, self-assembled diblock copolymers and functionalized perylene diimide small molecules were employed as inks for micron-sized array of patterns ranging from squares, lines, polygons and rings. Importantly, hierarchical patterns were obtained through microns-sized arrays of self-assembled block copolymers. In addition, to build layers of complex structures onto the same film, the technique can be repeated through sequential printing. As the authors elude in their conclusion, such high-fidelity pattern transfer work is very promising for potential uses in a number of areas such as the construction of van der Waals heterostructures interfaced with self-assembled block copolymer thin films and the development of platforms to investigate the influence of hierarchical patterning on cell differentiation.

Graphical abstract

Tips/comments directly from the authors:

  1. Solvent-vapor induced self-assembly of diblock copolymer thin films is an attractive approach to achieve long-range microphase segregation.
  2. Achieving solvent-vapor induced self-assembly of diblock copolymer thin films directly on exfoliated materials is particularly challenging because of the macroscopic topographical heterogeneities which disrupt the film integrity.
  3. Moreover, the generation of hierarchical patterns, particularly with one length scale in the nanometer regime, often involves lithographic processes which are difficult to scale.
  4. A simple contact-based approach is presented for transfer of polymeric materials (e.g. self-assembled block copolymers, homopolymers, small molecules), with well-defined edge resolution (<20 nm) and high fidelity of nanoscale pattern transfers.
  5. To avoid warped or cracked transfers, it is critical to handle PDMS stamps with care, avoiding excessive mechanical deformation, and to apply minimal pressure.
  6. Importantly, we show successful transfer of solvent-vapor induced self-assembled diblock copolymer films onto 2D materials (e.g. boron nitride).
  7. The transfer of micron-scale patterns of self-assembled diblock copolymers with nanoscale features yield hierarchical ordering.
  8. Patterns resulting from sequential soft nanotransfer printing resemble Moiré patterns, large-scale interference patterns. Such complex patterns may be used to impart local physical and electronic perturbations.

 

Read this article for free until the 31st July!

Hierarchical patterns with sub-20 nm pattern fidelity via block copolymer self-assembly and soft nanotransfer printing, Polym. Chem., 2019, 10, 3194-3200, DOI: 10.1039/C9PY00335E

 

 

About the Web writer

Professor Athina AnastasakiDr. Athina Anastasaki is an Editorial Board Member and a Web Writer for Polymer Chemistry. Since January 2019, she joined the Materials Department of ETH Zurich as an Assistant Professor to establish her independent research group.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2019 Lectureship awarded to Frederik Wurm at EPF 19

Dr Frederik Wurm presented the 2019 Polymer Chemistry Lectureship and received his Award at the European Polymer Congress on the topic of polyphosphoesters.

The European Polymer congress is the main conference of the European Polymer Federation, an umbrella non-profit organization of almost all National Polymer Societies in Europe. The meeting took place from the 9th – 14th June and brought together researchers working on various aspects of polymer science.

 

Neil Hammond, Frederik Wurm and Filip Du Prez at the EPF 2019

Dr Frederik Wurm receiving his Lectureship award from Dr Neil Hammond (left) and Professor Filip Du Prez (right) at the EPF 2019

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymer Chemistry Author of the Month: Bumjoon Kim

Professor Bumjoon KimBumjoon Kim is a Professor in the Department of Chemical and Biomolecular Engineering at KAIST since 2008 where he is appointed as the KAIST Endowed Chair Professor. He completed his doctorate under the guidance of Prof. Edward Kramer at UCSB. Then, he worked with Prof. Jean Fréchet at UC Berkeley. His research interests include development of block copolymer-based functional materials including shape-tunable particles, colorimetric sensors, and design of new electroactive polymers for all-polymer solar cells with high stability. He has published more than 170 peer-reviewed papers and 50 issued/pending patents. He was appointed as the Ewon Assistant Professor at KAIST (2010-2013). Also, he received the KAIST Academic Excellence Award (2015) and Shimgye Science Award (2017), and he was selected as 2013 Young Scientist by the World Economic Forum (DAVOS Forum) and appointed as the KAIST Endowed Chair Professor (2018). He currently serves as an editorial advisory board member of Macromolecules, ACS Macro Letters, Chemistry of Materials (ACS), J. Mater. Chem. A (RSC) and BMC Energy (Springer Nature).

 

What was your inspiration in becoming a polymer chemist?

I’m not sure what would be the best way to simply describe it. I was educated both as a chemical engineer and a polymer scientist, not a hard core chemist. During my senior year in college, I first learned about polymers in a class named “Introduction to Polymer Engineering” taught by Prof. Kookheon Char at Seoul National University. This course gave me a strong interest in polymer science and motivated me to study polymer science further. Also, I believe I was very fortunate to receive a well-balanced education in both polymer physics and chemistry during my time at graduate school and postdoctoral studies from Profs. Edward Kramer, Craig Hawker (UCSB), and Jean Fréchet (UC Berkeley). These interests and backgrounds have led me to pursue the development of new polymer-based materials that may benefit our lives and society.

What was the motivation behind your most recent Polymer Chemistry article?

Particle shape is one of the most fundamental and essential features that determines the function of polymeric particles. For example, anisotropically shaped particles can exhibit unique optical properties, packing structures, and rheological behaviors. For the last few years, our group has made contributions to the development of the principles dictating the shape of block copolymer (BCP) particles from the evaporative emulsions. For example, I would like to highlight the papers including JACS 2014, 9982; Adv. Funct. Mater. 2018, 1802961; Macromolecules 2019, 1150. This understanding is synergistically combined with a technique called “membrane emulsification” to produce the particles of the same size and shape in a large batch (also see ACS Nano 2017, 2133; Chem. Mater. 2018, 6277), which enables the use of these particles for the various applications described above. In this Polymer Chemistry article, we describe the development of a series of non-spherical Janus particles with interesting cone-shapes. Systematic control of particle shape is achieved by programming the phase-separation of the blend of BCP and newly-synthesized copolymers confined in emulsion droplets. We also have developed a theoretical model to explain the shape of the cone-shaped particles.

Which polymer scientist are you most inspired by?

As I mentioned in the answer to the first question, people who are world-leading polymer scientists as well as great teachers have inspired me and helped a lot to develop my career and do my current research. In particular, I have learned a lot from Prof. Edward Kramer, who was my Ph.D. advisor, on many aspects, such as how to conduct research and attitudes towards students. I believe his patience and inspiration for science have greatly influenced my choice of work as a teacher and professor.

How do you spend your spare time?

I like traveling and walking/driving near the seaside. I spend enough time relaxing and refreshing outside the office. This helps me to think more clearly. Also, I enjoy spending time with my 7-year-old daughter, Jaeyeon.

What profession would you choose if you weren’t a chemist?

I would like to be a teacher or a cook. Since I like teaching, I would spend time teaching young students if I were not a chemist. Also, I like cooking, so I think becoming a cook can be a great choice for me. I think there are many connections between cooking and doing experiments.

 

Read his Polymer Chemistry article for FREE until 15th July


graphical abstract

Block copolymers (BCPs) under colloidal confinement can provide an effective route to produce non-spherical particles. However, the resulting structures are typically limited to spheroids, and it remains challenging to achieve a higher level of control in the particle shape with different symmetries. Herein, we exploit the blend of BCPs and statistical copolymers (sCPs) within emulsion droplets to develop a series of particles with different symmetries (i.e. Janus-sphere and cone-shaped particles). The particle shape is tunable by controlling the phase behavior of the polymer blend consisting of a poly(styrene-block-1,4-butadiene) (PS-b-PB) BCP and a poly(methylmethacrylate-statistical-(4-acryloylbenzophenone)) (P(MMA-stat-4ABP)) sCP. A key strategy for controlling the phase separation of the polymer blend is to systematically tune the incompatibility between the BCP and sCP by varying the composition of the sCPs (ϕ4ABP, mole fraction of 4ABP). As a result, a sequential morphological transition from a prolate ellipsoid, to a Janus-sphere, to a cone-shaped particle is observed with the increase of ϕ4ABP. We further demonstrate that the shape-anisotropy of cone-shaped particles can be tailored by controlling the particle size and the Janusity, which is supported by quantitative calculation of the particle shape-anisotropy from the theoretical model. Also, the importance of the shape control of the cone-shaped particles with high uniformity in a batch is demonstrated by investigating their coating properties, in which the deposited coating pattern is a strong function of the shape-anisotropy of the particles.


About the webwriters

Simon HarrissonSimon Harrisson is a Chargé de Recherche at the Centre National de la Recherche Scientifique (CNRS), based in the Laboratoire des IMRCP in Toulouse. His research seeks to apply a fundamental understanding of polymerization kinetics and mechanisms to the development of new materials. He is an Advisory Board member for Polymer Chemistry. Follow him on Twitter @polyharrisson

 

 

 

Professor Athina Anastasaki

 

Professor Athina Anastasaki is an Editorial Board Member and a Web Writer for Polymer Chemistry. In January 2019 she joined the Materials Department of ETH Zurich as an Assistant Professor to establish her independent research group.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Transformation of gels via catalyst-free selective RAFT photoactivation

Controlled radical polymerization strategies are often exploited to tailor the properties of functional polymer networks. With the recent developments in external stimuli to regulate polymerization, the use of light has received significant attention as it enables the synthesis of materials with precise spatial, temporal, and sequence control.  In order to design structurally tailored and engineered macromolecular (STEM) networks, Matyjaszewski and co-workers proposed a new, metal-free approach to prepare well-defined networks. To achieve this, the authors selectively activated the fragmentation of trithiocarbonate reversible addition-fragmentation chain-transfer (RAFT) agents by visible light RAFT iniferter photolysis coupled with RAFT addition-fragmentation process. Through this two-step synthesis, different materials could be polymerized yielding compositionally and mechanically differentiated networks. Upon carefully selecting the crosslinker as well as the RAFT inimer, three different types of primary polymethacrylate networks could be generated under green light. The obtained networks were further enriched by the addition of methyl acrylate and dimethylacrylamide under blue light, resulting in soft and stiff gels respectively. Importantly, dynamic mechanical analysis was utilized to characterize the mechanical properties of both the starting and the final materials and to determine their glass transition temperatures. Such STEM networks significantly expand the toolbox of polymer and material science.

c9py00213h-ga[1]

Tips/comments directly from the authors:

 

  1. Structurally tailored and engineered macromolecular (STEM) networks are versatile materials containing latent functional groups accessible for post-synthesis modifications to afford new chemical and material properties.
  2. The network synthesis and modifications were controlled using dual wavelengths (green and blue). The primary network was synthesized under green light irradiation, and the subsequent modifications were performed under blue light.
  3. Initial network synthesis involves incorporation of two RAFT photoiniferters with similar Z groups (thioalkyl) but different R groups (either a tertiary or secondary carbon radical) to enable activation of one RAFT agent over the other under green light. This is followed by activation of both RAFT agents for secondary modification under blue light.
  4. The n to π* electronic transition at 520 nm affords photolysis of trithiocarbonate with 4-cyanopentanoic acid R-leaving group under green light leading to generation of tertiary carbon radicals promoting polymerization of methacrylates. The second trithiocarbonate RAFT agent with propionic acid R-leaving group is also incorporated into this network during this process as a RAFT methacrylate monomer or dimethacrylate crosslinker.
  5. Selective activation under green light is made possible as the addition of 4-cyanopentanoicacid radical to trithiocarbonate RAFT agent with propionic acid R-leaving group does not lead to fragmentation as radical stabilization energies of tertiary radicals are higher than secondary radicals.
  6. Therefore, the methacrylate/dimethacrylate RAFT agent with propionic acid R-leaving group remains inert under green light and can only be activated under blue light (465 nm) where the n to π* electronic transition lies.
  7. Both RAFT agents (secondary and tertiary leaving groups) are then activated in a second step which involves soaking in a second monomer (acrylate or acrylamides) into the network followed by polymerization under blue light.
  8. Depending on the functionality of the second monomer, the post-modified network can be either softer or stiffer with different responses to polarity (hydrophilicity/hydrophobicity).

Read the full paper now for FREE until 12th July!

Transformation of gels via catalyst-free selective RAFT photoactivation, Polym. Chem., 2019, 10, 2477-2483, DOI: 10.1039/C9PY00213H

About the webwriter

Professor Athina AnastasakiDr. Athina Anastasaki is an Editorial Board Member and a Web Writer for Polymer Chemistry. Since January 2019, she joined the Materials Department of ETH Zurich as an Assistant Professor to establish her independent research group.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)