Archive for March, 2018

Paper of the month: Cu(0)-RDRP of acrylates based on p-type organic semiconductors

Cu(0)-RDRP of acrylates based on p-type organic semiconductors

p-type organic semiconductor polymers can find a use in organic electronics, including organic light-emitting diodes (OLEDs), solar cells, and organic thin-film transistors. These materials offer unique characteristics over inorganic semiconductors such as flexibility and light weight. To maximize their potential, reversible deactivation radical polymerization (RDRP) methodologies are often used with traditional atom transfer radical polymerization and reversible addition/fragmentation chain transfer polymerization dominating in this area. To this end, Hudson and co-workers exploited Cu(0)-RDRP as an effective method for preparing functional acrylate-based polymers with p-type organic semiconductors as side chains. Impressively, all polymers were obtained in high yields (~ 90 %) with low dispersity and high end group functionality while the polymerizations displayed first order kinetics. Both low and high molecular weight polymers could be prepared in a facile manner and the choice of solvent seemed to be crucial to maintain good control over the molecular weight distributions. It should be highlighted that the described technique represents the most simple, low-cost and efficient way to synthesize these materials with improved end group functionality and yields over previous methods. The optical, electrochemical and thermal properties of each of these p-type materials were also carefully investigated with cyclic voltammetry and thermogravimetric analysis revealing the potential for further studies in optoelectronic applications. The Hudson group will now focus on the synthesis of more complex materials, including multiblock copolymers, and subsequently utilize them for optoelectronics.

Tips/comments directly from the authors:  

  1. The Cu(0) wire should be prepared immediately before use for best activity, as substantial reductions in polymerization rate are observed when the wire is cleaned and stored.
  2. Reducing the relative amount of Cu(0) wire when attempting the synthesis of high molecular weight polymers reduces the polymerization rate, but provides improved control over the polydispersity of the products.
  3. For long-term storage all monomers should be stored in the freezer (–10 ºC), but are stable on the bench top under air for 1-2 days.
  4. Yields of pure monomers 5a-c are substantially improved when purification is conducted quickly (<5 min) on a short silica column to minimize decomposition; the same urgency is not required for 5d.

Cu(0)-RDRP of acrylates based on p-type organic semiconductors, Polym. Chem., 2018, 9, 1397-1403, DOI: 10.1039/C8PY00295A

This article is free to read until 30 April

About the webwriter

AthinaDr. Athina Anastasaki is a Web Writer for Polymer Chemistry. She is currently a Global Marie Curie Fellow working alongside Professor Craig Hawker at the University of California, Santa Barbara (UCSB). Please, visit this site for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Outstanding Reviewers for Polymer Chemistry in 2017

We would like to highlight the Outstanding Reviewers for Polymer Chemistry in 2017, as selected by the editorial team, for their significant contribution to the journal. The reviewers have been chosen based on the number, timeliness and quality of the reports completed over the last 12 months.

We would like to say a big thank you to those individuals listed here as well as to all of the reviewers that have supported the journal. Each Outstanding Reviewer will receive a certificate to give recognition for their significant contribution.

Dr Athina Anastasaki University of California, Santa Barbara
Dr C. Remzi Becer, Queen Mary University of London, ORCID: 0000-0003-0968-6662
Dr Cyrille Boyer, University of New South Wales, ORCID: 0000-0002-4564-4702
Professor Yuanli Cai, Soochow University, ORCID: 0000-0001-5473-485X 
Professor Dr Gaojian Chen, Soochow University, ORCID: 0000-0002-5877-3159
Dr Sophie M Guillaume, CNRS – Université de Rennes, ORCID: 0000-0003-2917-8657 
Dr Dominik Konkolewicz, Miami University, ORCID: 0000-0002-3828-5481 
Dr Elango Kumarasamy, Columbia University
Dr Zachariah Page, University of California, Santa Barbara, ORCID: 0000-0002-1013-5422
Dr Per Zetterlund, University of New South Wales, ORCID: 0000-0003-3149-4464

We would also like to thank the Polymer Chemistry board and the polymer research community for their continued support of the journal, as authors, reviewers and readers.

If you would like to become a reviewer for our journal, just email us with details of your research interests and an up-to-date CV or résumé.  You can find more details in our author and reviewer resource centre

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Self-stabilized, hydrophobic or PEGylated paclitaxel polymer prodrug nanoparticles for cancer therapy

Paclitaxel (Ptx) is one of the most widely used chemotherapeutic agents for the treatment of a broad range of human tumors. Polymer prodrugs are often employed to solve a number of issues associated with its limited water solubility, the absence of ionisable groups to enable Ptx salt formation and the short colloidal stability of its formulations. In a way analogous to polymer synthesis, the “grafting from” approach, also referred to here as “drug-initiated” consists of the controlled growth of a polymer from a drug. However, this approach is limited by the poor colloidal stability of hydrophobic drug-polymer nanocarriers and the lack of the direct synthesis of PEGylated prodrugs. Nicolas and co-workers managed to tackle these issues by developing a global method which enables the facile derivatization of Ptx followed by the subsequent reversible deactivation radical polymerization to design surfactant-free, Ptx-polymer prodrug nanocarriers with contrasting properties. In particular, nitroxide-mediated polymerization (NMP) and reversible addition-fragmentation chain transfer polymerization were elegantly selected to grow short polyisoprene or poly[(oligo(ethylene glycol) methyl ether methacrylate)] chains from Ptx in a controlled fashion. This allowed for the formation of either self-stabilized, all-hydrophobic Ptx-polymer prodrug nanoparticles or their PEGylated counterparts. Importantly, these prodrug nanocarriers exhibited high cytotoxicity on three different cancer cell lines, with chain length-cytotoxicity dependency and IC50 values comparable to those of the parent drug. This versatile approach demonstrates the robustness and the broad use of the drug-initiated method for the simple design of efficient polymer prodrug nanoparticles consisting of polymers of opposite nature, thus opening new perspectives in the nanomedicine field.

Self-stabilized, hydrophobic or PEGylated paclitaxel polymer prodrug nanoparticles for cancer therapy

Tips/comments directly from the authors:  

  1. The drug-initiated NMP of isoprene from Ptx is a very simple yet efficient method to prepare surfactant-free, stable polymer prodrug nanoparticles with high drug payload, without any protection/deprotection chemistry.
  2. When using the AMA-SG1 alkoxyamine for Ptx derivatization, the resulting Ptx-AMA-SG1 alkoxyamine is obtained as a mixture of diastereomers (this is related to the two chiral centers of the alkoxyamine). The signals from the NMR spectrum should be carefully assigned. Alternatively, the diastereomers can also be separated by column chromatography with a less polar eluent.
  3. Mn of PEGMA-based prodrugs are higher than those of PI-based prodrugs because shorter POEGMA chains hardly precipitate compared to PI with similar Mn. Dialysis was not attempted because of potential hydrolytic cleavage between the drug and the polymer (especially with the diglycolate linker)

Self-stabilized, hydrophobic or PEGylated paclitaxel polymer prodrug nanoparticles for cancer therapy, Polym. Chem., 2018, 9, 687-698, DOI: 10.1039/C7PY01918A

This article is free to read until 16 April 2018

About the webwriter

AthinaDr. Athina Anastasaki is a Web Writer for Polymer Chemistry. She is currently a Global Marie Curie Fellow working alongside Professor Craig Hawker at the University of California, Santa Barbara (UCSB). Please, visit this site for more information.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)