Archive for October, 2014

Paper of the week: Functional α,ω-dienes via thiol-Michael chemistry

The preparation of functional α,ω-dienes via thiol-Michael chemistry including synthesis, oxidative protection, acyclic diene metathesis (ADMET) polymerization and radical thiol–ene modification has been reported by van Hensbergen et al.


The synthesis of the novel α,ω-diene 2-(undec-10-en-1-yl)tridec-12-en-1-yl acrylate is described. Thiol-Michael coupling of this substrate followed by chemoselective oxidation of the thioether moiety with triazotriphosphorine tetrachloride (TAPC) furnished a suite of functional and symmetrical ADMET-active monomers in a quick and convenient manner. Polymerization of these adducts with Grubbs 1st generation catalyst (RuCl2(PCy3)2CHPh) was demonstrated to high conversion, and quantitative radical initiated thiol–ene modification of the backbone C[double bond, length as m-dash]C bonds was performed to impart additional functionality to each ADMET polymer. These reactions highlight the compatibility of thiol-based click chemistries for the preparation and post-modification of functional ADMET materials.

Functional α,ω-dienes via thiol-Michael chemistry: synthesis, oxidative protection, acyclic diene metathesis (ADMET) polymerization and radical thiol–ene modification by Johannes A. van Hensbergen, Taylor W. Gaines, Kenneth B. Wagener, Robert P. Burford and  Andrew B. Lowe Polym. Chem., 2014, 5, 6225-6235.

Remzi Becer is a web-writer and advisory board member for Polymer Chemistry. He is currently a Senior Lecturer in Materials Science and the director of the Polymer Science and Nanotechnology masters programme at Queen Mary, University of London. Visit www.becergroup.com for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the week: Ethanol biosensors based on conducting polymers with peptide and ferrocene on the side chain

The synthesis and characterization of conducting polymers containing polypeptide and ferrocene side chains as ethanol biosensors has been reported by Yagci and Toppare et al.

This paper describes a novel approach for the fabrication of a biosensor from a conducting polymer bearing polypeptide segments and ferrocene moieties. The approach involves the electrochemical copolymerization of the electroactive polypeptide macromonomer and independently prepared ferrocene imidazole derivative of dithiophene, on the electrode surface. The polypeptide macromonomer was synthesized by the simultaneous formation of N-carboxyanhydride (NCA) and ring opening polymerization of N-Boc-L-lysine (α-amino acid of the corresponding NCA) using an amino functional bis-EDOT derivative (BEDOA-6) as an initiator. Alcohol oxidase was then covalently immobilized onto the copolymer coated electrode using glutaraldehyde as the crosslinking agent. The intermediates and final conducting copolymer before and after enzyme immobilization were fully characterized by FT-IR, 1H-NMR, GPC, cyclic voltammetry, SEM and EIS analyses. The newly designed biosensor which combined the advantages of each component was tested as an ethanol sensing system offering fast response time (9 s), wide linear range (0.17 mM and 4.25 mM) and low detection limit (0.28 mM) with a high sensitivity (12.52 μA mM−1 cm−2). Kinetic parameters KappM and Imax were 2.67 mM and 2.98 μA, respectively. The capability of the biosensor in determining ethanol content in alcoholic beverages was also demonstrated.

Synthesis and characterization of conducting polymers containing polypeptide and ferrocene side chains as ethanol biosensors by Melis Kesik, Huseyin Akbulut, Saniye Söylemez, Şevki Can Cevher, Gönül Hızalan, Yasemin Arslan Udum, Takeshi Endo, Shuhei Yamada, Ali Çırpan, Yusuf Yağcı and Levent Toppare Polym. Chem., 2014, 5, 6295-6306.

Remzi Becer is a web-writer and advisory board member for Polymer Chemistry. He is currently a Senior Lecturer in Materials Science and the director of the Polymer Science and Nanotechnology masters programme at Queen Mary, University of London. Visit www.becergroup.com for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Author of the Month: Hyung-il Lee

Professor Hyung-il Lee received his BS and MS degrees in Industrial Chemistry from Hanyang University in South Korea in 1998 and 2000, respectively. He received a PhD in Chemistry under the supervision of Professor Kris Matyjaszewski from Carnegie Mellon University in 2007. He worked as a postdoctoral fellow at Massachusetts Institute of  Technology (2007-2009). He then joined the Department of Chemistry at Ulsan University in South Korea in 2009, and now he is an associate professor of chemistry. His current research interests are focused on the synthesis of stimuli-responsive polymers for sensing and bio-related applications.

Take a look at Professor Lee’s research group website

What was your inspiration in becoming a chemist?

Actually, I never wanted to be a chemist who deals with a million tiny, stinky chemicals. I happened to major in chemistry just like other dreamless boys in college. However, after I knew that polymerization is a wonderful magic which turns useless gases to valuable materials for our life, I lived my life with the synthesis of polymers. I will guide my son to be a theoretical chemist though.

What was the motivation to write your Polymer Chemistry article?

Recently, a great deal of effort has been made to prepare polymers with multiple-responsive components. For example, the LCST of thermoresponsive poly(N-isopropylacrylamide)s containing light responsive azobenzene groups in the side or end of the polymer chain was tuned by isomerization of the azobenzene moieties by photoirradiation. Several studies revealed that the biologically important green fluorescent protein (GFP) chromophore undergoes non-irradiative processes, such as E/Z isomerization, upon irradiation with light. With these as an inspiration, we turned to design dual responsive polymers in which thermoresponsive behaviors are further tuned by the E/Z isomerization of benzylidene oxazolone moieties by light irradiation.

Why did you choose Polymer Chemistry to publish your work?

Since my work is related to polymer chemistry, which journal should I publish in except ‘Polymer Chemistry’?

In which upcoming conferences may our readers meet you?

I might be attending the Spring 2015 ACS meeting.

How do you spend your spare time?

I spend it babysitting my 2 year old son and 9 month old daughter. If my wife lets me, I love to sleep.

Which profession would you choose if you were not a scientist?

A professional GO (chess) player.


Read Professor Lee’s latest Polymer Chemistry paper:

New benzylidene oxazolone derived polymeric photoswitches for light-induced tunable thermoresponsive behaviors
A. Balamurugan and Hyung-il Lee


Cyrille Boyer is a guest web-writer for Polymer Chemistry. He is currently an associate professor and an ARC-Future Fellow in the School of Chemical Engineering, University of New South Wales (Australia) and deputy director of the Australian Centre for NanoMedicine.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the week: Supramolecular polymerization of supramonomers

The synthesis of supramolecular polymers using supramonomers have been reported by Zhang et al.

The paper of the week describes a new method of fabricating supramolecular polymers through supramolecular polymerization of supramonomers. To mix building blocks of Phe-Gly-Gly linked with an azobenzene group and cucurbit[8]uril (CB[8]) in a molar ratio of 2:1 in aqueous solutions, supramonomers were obtained by host–guest interaction between tripeptide and CB[8]. Then supramolecular polymers were formed spontaneously by mixing the supramonomers with bis-β-cyclodextrins in a molar ratio of 1:1 in an aqueous solution through noncovalent host–guest complexation of the azobenzene group and β-cyclodextrin. Considering that various noncovalent interactions can be used to drive the formation of supramonomers and the supramolecular polymerization of the supramonomers, this study can enrich the methodology of fabricating supramolecular polymers.

Supramolecular polymerization of supramonomers: a way for fabricating supramolecular polymers by Qiao Song, Fei Li, Xinxin Tan, Liulin Yang, Zhiqiang Wang and Xi Zhang Polym. Chem. 2014, 5, 5895-5899.

Remzi Becer is a web-writer and advisory board member for Polymer Chemistry. He is currently a Senior Lecturer in Materials Science and the director of the Polymer Science and Nanotechnology masters programme at Queen Mary, University of London. Visit www.becergroup.com for more information!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)