Paper of the Week: Hyperbranched polythioether-ynes by thiol-halogen click-like coupling and thiol-yne click polymerization

Fast and scalable production of hyperbranched polythioether-ynes was achieved by applying sequential click chemistry (SCC) via couple-monomer methodology (CMM). As a typical example, thiol-halogen click-like reaction employing strong base, KOH and thiol-yne click reaction via UV irradiation were used for precursor preparation and polymerization, respectively. Two series of hyperbranched polythioether-ynes employing two kinds of di-thiols with different reactivity have been prepared within 10 h and characterized with 1H NMR spectroscopy and gel permeation chromatography. The hyperbranched polymers (HPs) derived from 1,6-hexanedithiol reached high weight-average molecular weight (Mw) of 230500, high weight-average degree of polymerization (DPw) of 1224 and high degree of branching (DB) of 0.82–0.68. Postmodification of abundant alkyne terminal groups afford HPs with a greatly enhanced DB of 0.96. Heat-initiated polymerization was also attempted. The present study clearly demonstrates the robustness of application of SCC technique in the CMM strategy for fast, scalable preparation of multifunctional HPs.

Fast and scalable production of hyperbranched polythioether-ynes by a combination of thiol-halogen click-like coupling and thiol-yne click polymerization by Jin Han, Bo Zhao, Aijin Tang, Yanqin Gao and Chao Gao Polym. Chem., 2012, 3, 1918-1925

To keep up-to-date with all the latest research, sign up for the journal’s e-alerts or RSS feeds or follow Polymer Chemistryon Twitter or Facebook.

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)