Congratulations to our shortlisted candidates for the 2024 Journal of Materials Chemistry Lectureship

Congratulations to our shortlisted candidates for the 2024 Journal of Materials Chemistry Lectureship

The Journal of Materials Chemistry annual lectureship, established in 2010, honours early-career scientists who have made a significant contribution to the field of materials chemistry. We were delighted to have awarded Dr Raphaële Clément (University of California, Santa Barbara, United States) the 2024 Lectureship.

This year we received numerous high-quality nominations from across the world and we wanted to recognise our shortlisted candidates for their contributions to materials chemistry and as emerging leaders in their fields. We have listed the names of the shortlisted candidates below and have put together a collection featuring some of their recent work published in Royal Society of Chemistry journals.

 

Please note that we have only included candidates who have consented to recognition of their name in this way.

Runners-up

Dr Maxx Arguilla (University of California, Irvine, United States)

Dr Phillip Milner (Cornell University, United States)

 

Shortlisted Candidates

Professor Milad Abolhasani (North Carolina State University, United States)

Professor Giuseppe Cavallaro (University of Palermo, Italy)

Professor Jinxing Chen (Soochow University, China)

Professor Juan-Pablo Correa-Baena (Georgia Institute of Technology, United States)

Professor Antoni Forner-Cuenca (Eindhoven University of Technology, The Netherlands)

Dr Chun Ann Huang (Imperial College London, United Kingdom)

Dr Haegyum Kim (Lawrence Berkeley National Laboratory, United States)

Professor Ayala Lampel (Tel Aviv University, Israel)

Professor Eleonora Macchia (University of Bari, Italy)

Dr Libu Manjakkal (Edinburgh Napier University, United Kingdom)

Professor Lukasz Marciniak (Polish Academy of Sciences, Poland)

Dr Beatriz Martín-García (CIC nanoGUNE BRTA, Spain)

Professor Lisa Poulikakos (University of California, San Diego, United States)

Dr Alex Ramadan (University of Sheffield, United Kingdom)

Professor Daniel Tordera (University of Valencia, Spain)

Dr Junpeng Wang (University of Akron, United States)

Professor Weiwei Xie (Michigan State University, United States)

Dr Aleksandr V. Zhukhovitskiy (University of North Carolina at Chapel Hill, United States)

Related posts:

2024 Journal of Materials Chemistry Lectureship winner: Raphaële Clément

2024 Journal of Materials Chemistry Lectureship runners-up: Maxx Arguilla and Phillip Milner

 

 

 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2024 Journal of Materials Chemistry Lectureship runners-up: Maxx Arguilla and Phillip Milner

Congratulations to our 2024 Journal of Materials Chemistry Lectureship runners-up, Dr Maxx Arguilla and Dr Phillip Milner

This year, Dr Raphaële Clément from University of California, Santa Barbara, United States was selected as the recipient of the 2024 Journal of Materials Chemistry Lectureship. While we can only award one winner, we wanted to recognise two runners-up for their impressive contributions to materials chemistry and as emerging leaders in the field.

Congratulations to Dr Maxx Arguilla (University of California, Irvine, United States) and Dr Phillip Milner (Cornell University, United States) for being selected as the runners-up of the 2024 Journal of Materials Chemistry Lectureship.

Maxx Q. Arguilla originates from the Philippines. He obtained his B.S. in Chemistry from the University of the Philippines Diliman, cum Laude, in 2011. After a one-year junior instructor position at UPD, he moved to the US and completed his Ph.D. in Inorganic Chemistry from The Ohio State University with Professor Joshua Goldberger in 2017. His dissertation centered on the electronic, optical, and magnetic properties and applications of new two-dimensional solid state lattices in the bulk and at the nanoscale. He then moved to MIT as postdoctoral fellow in Professor Mircea Dinca’s group, where he focused on the growth of one-dimensional van der Waals crystals and the evolution of their physical properties as they transform into ultrathin nanowires and on establishing the fundamental anisotropic physical properties of two-dimensional metal-organic frameworks. In July 2020, Professor Arguilla joined the UC Irvine Department of Chemistry as a tenure-track Assistant Professor. His research is focused on the discovery and chemical understanding of several classes of crystalline solid state materials comprising of sub-nanometer-thick inorganic chains that are held together by weak van der Waals (vdW) or ionic interactions. Such functional 1D and quasi-1D structures could be thought of as freestanding “edge states” or “all-inorganic polymers” and could bridge the underexplored chemical and physical knowledge gap that exists between atomically precise 2D and 0D solids. He is an affiliate faculty of the Department of Chemical and Biomolecular Engineering and the Solutions that Scale Initiative. He also serves as a member of the advisory board of both the Eddleman Quantum Institute and the American Chemical Society’s Chemical & Engineering News. Professor Arguilla is the recipient of the NSF CAREER Award and a finalist (grand winner to be announced) for the 2024 Dream Chemistry Award of the Polish and Czech Academy of Sciences. He was also named as one of Chemical & Engineering News’ Talented Twelve honorees in 2023 and as Matter’s 35 PIs under 35 in Materials Science in 2024.

 

Phillip Milner (Phill) was born a stone’s throw from Ithaca in Towanda, PA and grew up near Rochester, NY. Phill attended Hamilton College near Utica, NY, where his love of synthetic organic chemistry was born while working on radical cyclizations with Prof. Ian Rosenstein.

 

Phill graduated from Hamilton College in 2010 with B.A.s in Chemistry and Mathematics, and went on to pursue his Ph.D. in Chemistry with Prof. Stephen Buchwald at MIT. There, Phill developed Pd-catalyzed fluorination and 11C-cyanation reactions of (hetero)aryl halides. Upon graduating from MIT in 2015, Phill joined the group of Prof. Jeffrey Long at the University of California, Berkeley, where he designed amine-functionalized metal–organic frameworks for CO2 capture.

 

In 2018, Phill joined the Department of Chemistry and Chemical Biology at Cornell University, where his research is focused broadly at the intersection of organic, inorganic, and materials chemistry.  Phill is a member of the Cornell Center for Materials Research (CCMR) and the Cornell Energy Systems Institute (CESI), a Cornell Atkinson Center for Sustainability Faculty Fellow, and a field member in the Department of Chemical and Biomolecular Engineering. Phill was promoted to Associate Professor with tenure in 2024.

 

Phill’s independent awards and honors include: Camille Dreyfus Teacher-Scholar Award (2023), NSF CAREER Award (2021), Robert A. and Donna B. Paul Award for Excellence in Advising (2021), Scialog Fellowship (2020), Department of Energy Early Career Award (2020), and NIH Maximizing Investigator’s Research Award (2020).

 

 

Check out our interview with Maxx and Phillip below:

How did you feel when you were announced as a runner-up of the 2024 Journal of Materials Chemistry Lectureship?

MA: Being a runner-up for the 2024 JMC is a great honor for me as it recognizes our contributions in understanding the chemistry and physics of emergent 1D and quasi-1D solids that approach the sub-nanometer-thick regime that many have thought would be very challenging and almost impossible. It is, personally, special since this recognition is coming from one of the family of materials chemistry journals that I have followed consistently since my formative years. The previous awardees and runners-up are also materials scientists that I look up to and aspire to emulate. Most importantly, this award is a recognition of the tremendous collective effort of the members of my group and our network of collaborators who have dedicated their time, effort, and creativity in exploring an unusual and understudied class of low-dimensional solids.

PM: I feel truly honored to be recognized as a runner-up for this lectureship. Having been trained classically as an organic chemist during my PhD, I came to the world of materials relatively late. Our research group tries to blend the two worlds together in (what we hope are) new and innovative ways. Being recognized with this prestigious lectureship highlights how supportive the materials community has been of our work over the last 6 years.

Which of your Journal of Materials Chemistry publications are you most proud of and why?

MA: I am most proud of my first paper in JMCC (J. Mater. Chem. C, 2017, 5, 11259-11266) where I demonstrated how micro-Raman spectroscopy can be used a probe to study the composition- and stacking-dependence of the Raman-active phonon modes in layered honeycomb Zintl phase tetrelides and their 2D van der Waals deintercalation products. This is a paper that I wrote when I was in graduate school but the approach that I have taken in this work has shaped how we use micro-Raman spectroscopy in my group as an enabling tool to probe the structure, lattice dynamics, and stimulus-sensitive response of various classes of low-dimensional solids, especially approaching atomic scale thicknesses.

PM: I am going to cheat a little bit and pick a paper from each JMC-A and JMC-C! In a paper we published in JMC-A last year (J. Mater. Chem. A, 2023, 11, 17159–17166) we built upon some previous work to try to identify general conditions for the solvent-free synthesis of conjugated microporous polymers. We tested over 30 different Lewis/Bronsted acids and found just one (ZnBr2) that can be used generally to make many different porous materials from simple poly(ketone) monomers. Really a user-friendly way to make porous materials, which is something our lab is excited about. This year in JMC-C, we published a paper looking carefully at a really difficult problem – nitrous oxide (N2O) activation using MOFs. We looked carefully at a number of different materials to try to understand what enables N2O cleavage by metal sites in MOFs to make N2 and reactive metal oxos. This work also sparked a collaboration with Heather Kulik at MIT, which continues to this day!

At which upcoming conferences may our community meet you?

MA: My group and I will be attending the American Chemical Society Spring 2025 meeting in San Diego and the North American Solid State Chemistry Conference in Ames, Iowa in Summer 2025.

PM: I am currently planning to attend EuroMOF 2025!

What do you like to do in your free time?

MA: In a recent feature in C&EN magazine (https://cen.acs.org/materials/inorganic-chemistry/Maxx-Arguilla/101/i16), I talked about how the 1D materials that my group works on resemble many forms of pasta of various thicknesses, dimensionalities (spaghetti vs. lasagna), tubular forms (penne and rigatoni), or even complex chiral structures (fusilli and rotini). This comparison was intentionally by design since I am a foodie—I spend my free time either trying out new hole-in-the-wall restaurants or cooking (often times, homemade pasta dishes) in my home kitchen.

PM: Since it is basically just “applied chemistry,” brewing beer is something I like to do for fun. I also like to listen to (admittedly terrible) music.

Do you have any advice for Early-Career researchers who wish to be nominated for the 2025 JMC Lectureship award?

MA: While many of our projects are hypothesis-driven, the most unusual results that we found in our materials systems arose from curiosity-driven research. In classes of materials where our chemical intuition is limited, there is a large, untapped opportunity to explore ideas that do not necessarily conform to the scientific norms in various fields. Thus, if there is an advice that I can give to early-career researchers, it would be to follow their scientific curiosities as these could lead to surprising discoveries that can accelerate (or change) the course of the field!

PM: One piece of advice I got (from one of my colleagues) is “there is no silver bullet.” I interpreted this as, don’t just do whatever everyone else is doing – work on what you find interesting and think could be impactful! It is good to think outside the box about what new ideas you can bring to long-standing challenges in the field.

Related posts:

2024 Journal of Materials Chemistry Lectureship winner: Raphaële Clément

2024 Journal of Materials Chemistry Lectureship shortlisted candidates

 

 

 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2024 Journal of Materials Chemistry Lectureship winner: Raphaële Clément

Congratulations to Dr Raphaële Clément, University of California, Santa Barbara, United States for being selected as the recipient of the 2024 Journal of Materials Chemistry Lectureship

The Journal of Materials Chemistry Lectureship is an annual award, established in 2010, which honours early-career scientists who have made a significant contribution to the fields of materials chemistry. This year we received numerous high-quality nominations from across the world. With help from our Advisory and Editorial Boards, each nomination was assessed and considered for the award. The final selection was made by our Editors-in-Chief and Executive Editor.

“This is a wonderful recognition of the group’s hard work over the years.”

Dr Raphaële Clément

University of California, Santa Barbara, United States

2024 Journal of Materials Chemistry Lectureship

Dr Raphaële Clément is an Associate Professor in the Materials Department at UC Santa Barbara. She received her Ph.D. in Chemistry in 2016 from the University of Cambridge, working under the supervision of Prof. Dame Clare Grey. She then joined the group of Prof. Gerbrand Ceder as a postdoc at UC Berkeley. Since 2018, the Clément group at UC Santa Barbara is interested in establishing materials design rules, and in optimizing materials processing approaches to advance electrochemical energy storage. The group’s expertise lies in the development and deployment of magnetic resonance and magnetometry techniques (experimental and computational) for the study of battery materials and beyond, with an emphasis on real-time, operando analysis. Raphaële’s recent awards include an NSF CAREER Award, a 2024 Camille Dreyfus Teacher-Scholar Award, the IBA Early Career Researcher Award from the International Battery Association, as well as the Battery Division Early Career Award from the Electrochemical Society. She is a Topical Editor for ACS Energy Letters.

You can keep up to date with Raphaële’s research on her website: https://clement.materials.ucsb.edu/

Discover Raphaële’s RSC publications in this web collection to find out more about her research

Check out our interview with Raphaële below:

How did you feel when you were announced as the winner of the 2024 Journal of Materials Chemistry Lectureship?

I was thrilled. This is a wonderful recognition of the group’s hard work over the years. I have been fortunate to work with talented students and postdocs, so this award goes to them too.

Which of your JMC publications are you most proud of and why?

This paper (J. Mater. Chem. A, 2022, 10, 21565-21578) lead by a former student, Elias, is a textbook example of the impact of materials synthesis and processing on structure and properties. This is a study of a new class of Na-ion solid conductors, where solid-state NMR was key to understanding their complex defect and polymorphic landscape, and ion transport processes. I am proud of it because this was a complicated puzzle and we solved it!

At which upcoming conferences may our community meet you?

I am often at the MRS, ECS, and ACS conferences, as well as more specialized battery and NMR conferences.

What do you like to do in your free time?

I like to spend time in nature (hiking, backpacking, or on a road trip), exercising (yoga, running), exploring new parts of the world, listening to podcasts, going to concerts, and cooking.

Do you have any advice for Early-Career researchers who wish to be nominated for the 2025 JMC Lectureship award?

Don’t give up! There are many talented Early Career researchers out there, and only one receives the Lectureship every year. I applied several times and this paid off.

Please join us in congratulating Raphaële!

Related posts:

2024 Journal of Materials Chemistry Lectureship runners-up: Maxx Arguilla and Phillip Milner

2024 Journal of Materials Chemistry Lectureship shortlisted candidates

 

 

 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Multimodal Remote Actuation and Sensing in Polymers

Read the new collection in Materials Advances

We are delighted to introduce our new themed collection focusing on remote actuation in polymers.

Guest Edited by Lorenzo Bardella (University of Brescia, Italy),Mohammad Luqman (Taibah University, Saudi Arabia) and Vinay Deep Punetha (P P Savani University, India).

 

A message from the Guest Editors:

“Hopefully, readers will find these fascinating papers from diverse research domains enlightening, broadening the understanding of the extensive research on stimuli-responsive materials and inspiring new investigations on innovative applications for these versatile materials.”

 

A small selection of the papers are featured below:

A multi-cation model for the actuation of ionic membranes with ionic liquids

Alain Boldini

Mater. Adv., 2024,5, 5213-5230. DOI: 10.1039/D4MA00097H

High-performance transparent hybrid (ionic and dielectric) gel actuator system based on poly(vinyl chloride)/dibutyl adipate/ionic liquid gels operating at a low applied voltage

Naohiro Terasawa and Hirosato Monobe

Mater. Adv., 2024,5, 4715-4719. DOI: 10.1039/D4MA00143E

Finely tuning the self-assembled architectures of liquid crystal polymers by molecular engineering: phase transitions derived from terminal group variations

Wenhuan Yao, Yanxia Wang, Lansheng Liu, Anzhi Ma, Jie Zhao, Zhengrui Ma, Lanying Zhang and Ruochen Lan

Mater. Adv., 2024,5, 3450-3458. DOI: 10.1039/D3MA01185B

 

We hope you enjoy reading the full themed collection here.

 

Did you know?

At Materials Advances, our themed collections are built by collaboration between our Guest Editors and expert Associate Editors. Our Guest Editors guide the scope and curate the contributions in our collections but all submissions are handled through peer review by our team of resident Associate Editors. This means that as an author you receive a consistent experience, and as a reader you can trust the quality of the science being presented.

If you have an idea for a topical collection in your research field, we’d love to hear from you! Get in touch here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Open call for papers – Molecular Crystals: Mechanics and Photonics

Journal of Materials Chemistry C open call for papers

Molecular Crystals: Mechanics and Photonics

Journal of Materials Chemistry is delighted to announce an open call for papers to a themed collection on ‘Molecular Crystals: Mechanics and Photonics’ guest edited by Prof. Rajadurai Chandrasekar (University of Hyderabad, India), Prof. Panče Naumov (New York University Abu Dhabi), Prof. Xue-Dong Wang (Soochow University) and Prof. Kristin Hutchins (University of Missouri).

This special issue investigates the extraordinary properties of molecular crystals and their essential role in the management of mechanical and optical energy. It showcases their diverse applications in contemporary scientific and technological domains, such as non-linear optics, sensor technologies, switchable devices, and sophisticated photonic components and circuits. Examples of topics suitable for this collection include, but are not limited to:

  • Flexible crystals (e.g. elastic, plastic, ferroelastic)
  • Photomechanical crystals
  • Salient (thermosalient and photosalient) phenomena
  • Crystal growth techniques (self-assembly, sublimation, etc) relevant to crystal’s mechanical and optical properties
  • Crystal-based optical waveguides, cavities, lasers, modulators, etc.
  • Crystal-based photonic integrated circuits
  • Crystal OLEDs
  • Emissive dynamic crystals
  • Electronic properties of dynamic crystals
  • Crystal/metal hybrid devices (actuators, sensors, etc)
  • Molecular crystalline robots
  • Chiral molecular crystals displaying mechanical and/or photonic properties
  • Mechanophotonics for microscale crystals
  • Crystal adaptronics
  • Epitaxial growth of homo and heterocrystals with photonic functions
  • 2D and 3D patterning of optical crystals
  • NLO (SHG, TPA, THz, etc) properties of molecular crystals
  • Crystal milling using FIB lithography
  • Advanced characterization and micromanipulation techniques
  • Mathematical modeling of dynamic crystals
  • Mechanical properties of molecular crystals
  • Thermodynamics of energy conversion by dynamic crystals
  • Theoretical understanding of the crystal mechanics and photonics
  • Dynamic processes in crystals resulting from mechanical flexibility or photonics

Open for Submissions until 28 February 2025

Submissions to the journal should contain chemistry in a materials context and should fit within the scope of Journal of Materials Chemistry C. Please see the journal’s website for more information on the journal’s scope, standards, article types and author guidelines.


How to submit


We strongly encourage authors to submit primary research (Full paper or Communication) to this themed collection. If you would like to submit a Review-type article, please email the Editorial Office at materialsc-rsc.org to provide an outline to be approved by the Editorial Office.

When ready, please submit your article directly to the submissions platform for Journal of Materials Chemistry C where our editors will assess your submission. Please add a note in the ‘Comments to the Editor’ and ‘Themed collections’ sections of the submission mentioning this is a manuscript for the themed collection on ‘Molecular Crystals’ and that it is in response to the ‘Open Call’.

All submissions will be subject to assessment against the journal’s usual scope and standards criteria and sent for peer review only if appropriate. Accepted articles will be published online as soon as they are ready and added to the web collection.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Welcoming Professor Ricardo Grau-Crespo to the Journal of Materials Chemistry A and Materials Advances Editorial Boards

We are delighted to welcome Professor Ricardo Grau-Crespo from University of Reading, UK to the Editorial Board of Journal of Materials Chemistry A and Materials Advances as an Associate Editor.

I’m excited to join the Editorial Board of Journal of Materials Chemistry A and Materials Advances to contribute to the outstanding work these journals are doing in publishing cutting-edge research with real-world impact in renewable energy and sustainable technologies.

 

I look forward to encouraging and handling submissions related to computational and machine-learning techniques in materials chemistry, especially at a time when AI is driving a remarkable acceleration in the predictive capabilities of computational chemistry. As Associate Editor, I’m keen to help build a diverse and vibrant platform for researchers from around the world, and foster a community that brings together novel ideas, interdisciplinary approaches, and new voices in materials chemistry.

Ricardo Grau-Crespo is an Associate Professor of Materials Theory at the Department of Chemistry of the University of Reading, where he leads a research group focused on the computer modelling of energy materials.

His research uses a combination of density functional theory and machine learning techniques to understand and predict the behaviour of materials in thermoelectric, photocatalytic, and other applications. He is also interested in the theory of site-disordered materials and the development of computational tools for calculating their properties. Dr Grau-Crespo earned a BSc and MSc in Physics at the University of Havana, Cuba.

After working for a few years researching zeolite-based catalysts for the Cuban oil industry, Ricardo moved to the UK with an Overseas Research Studentship award to pursue a PhD at Birkbeck, University of London. He then held a postdoctoral position and a subsequent four-year lectureship at University College London, before joining the University of Reading in 2013 where he is currently Research Division Leader for Chemical Sciences. He has published over 110 articles in the field of computational materials science and is a Fellow of the Royal Society of Chemistry (FRSC).

Read Ricardo’s latest publications in RSC journals below:

Spinel ferrites MFe2O4 (M = Co, Cu, Zn) for photocatalysis: theoretical and experimental insights

Charlotte A. Hall, Pilar Ferrer, David C. Grinter, Santosh Kumar, Ivan da Silva, Juan Rubio-Zuazo, Peter Bencok, Frank de Groot, Georg Held and Ricardo Grau-Crespo

J. Mater. Chem. A, 2024, Advanced Article

Ultralow thermal conductivity in defect pyrochlores: balancing mass fluctuation scattering and rattling modes

Natasha Ormerod, Anthony V. Powell, Ricardo Grau-Crespo, Richard K. B. Gover and Christina J. Cox

J. Mater. Chem. A, 2024,12, 22668-22678

Thank you for joining us in welcoming Ricardo Grau-Crespo to the Journal of Materials Chemistry A and Materials Advances Editorial Boards.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Meet the Guest Editors: Transport in Organic and Hybrid Semiconductors

We are delighted to announce this open call for papers to contribute to a themed collection for Journal of Materials Chemistry C on Transport in Organic and Hybrid Semiconductors, guest edited by Dr Oana Jurchescu (Wake Forest University, USA), Dr Yuning Li (University of Waterloo, Canada), and Dr Simone Fabiano (Linköping University, Sweden). For more details about the Open Call and how to submit, see this blog post.

Dr Oana Jurchescu (Wake Forest University, USA)

Oana D. Jurchescu is a Baker Professor of Physics at Wake Forest University (USA) and a fellow of the Royal Society of Chemistry. She received her PhD in 2006 from University of Groningen, the Netherlands, and was a postdoctoral researcher at the National Institute of Standards and Technology, USA. Her expertise is in charge transport in organic and organic/inorganic hybrid semiconductors, device physics and semiconductor processing. She has received numerous awards for her research and teaching, including the NSF CAREER Award, the NSF Special Creativity Award, and the Pegram Award from the American Physical Society.

Dr Yuning Li (University of Waterloo, Canada)

Dr. Yuning Li is a Professor in the Department of Chemical Engineering at the University of Waterloo and a member of the Waterloo Institute for Nanotechnology (WIN). He earned his bachelor’s and master’s degrees in polymer materials from Dalian University of Technology in China in 1985 and 1988, respectively, and completed his Ph.D. in materials science at the Japan Advanced Institute of Science and Technology (JAIST) in 1999.

Before joining the University of Waterloo in 2010, Dr. Li gained extensive research experience at institutions such as Simon Fraser University, the National Research Council of Canada (NRC), the Xerox Research Centre of Canada (XRCC), and the Institute of Materials Research and Engineering (IMRE) at the Agency for Science, Technology, and Research (A*STAR) in Singapore.

Since 1999, Dr. Li has focused on printed electronics, particularly organic light-emitting diodes, organic thin-film transistors, and organic photovoltaics. He has authored over 200 peer-reviewed journal articles, with an h-index of 64 and more than 18,000 citations. His innovative contributions have also led to 76 U.S. patents and the commercialization of multiple products.

Dr Simone Fabiano (Linköping University, Sweden)

Simone Fabiano is an associate professor and docent in Applied Physics at Linköping University, Sweden. He obtained his PhD in Chemistry from the University of Palermo in 2012. During his doctoral studies, he was a visiting scholar at the Zernike Institute for Advanced Materials of the University of Groningen, The Netherlands. He then held postdoctoral positions at both Linköping University (2012-2015) and Northwestern University (2016-2017) before returning to Linköping University to establish his research group. In 2020, he founded n-Ink AB, a spinout company that focuses on developing n-type organic conductive inks, where he serves as the Chief Scientific Officer. His group at Linköping University primarily focuses on developing organic dopant-free conductors and mixed ionic-electronic conductors for printed electronics and neuromorphic hardware applications. He has received several awards, including the Swedish Research Council Starting Grant in 2017 and Consolidator Grant in 2023. He is also a Wallenberg Academy Fellow.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Open Call: Transport in Organic and Hybrid Semiconductors

We are delighted to announce this open call for papers to contribute to a themed collection for Journal of Materials Chemistry C on Transport in Organic and Hybrid Semiconductors, guest edited by Dr Oana Jurchescu (Wake Forest University, USA), Dr Yuning Li (University of Waterloo, Canada), and Dr Simone Fabiano (Linköping University, Sweden).Organic and hybrid semiconductors have garnered significant interest due to their potential for flexible, lightweight, and low-cost electronic and optoelectronic devices. Understanding and controlling charge transport in these materials is crucial for advancing their applications. This Journal of Materials Chemistry C collection aims to showcase the latest breakthroughs in the fundamental understanding and technological advancements related to charge transport in organic and hybrid semiconductors.

Appropriate topics include, but are not limited to:

  • Charge carrier mobility measurements and modeling
  • Understanding the role of defects and impurities in charge transport
  • Novel device architectures for improved charge transport
  • Interface engineering for efficient charge injection and extraction
  • Theoretical and computational studies of charge transport mechanisms
  • Applications of organic and hybrid semiconductors in transistors, solar cells, light-emitting diodes, and other devices

Please consider contributing to this open call for papers for our upcoming themed collection on Transport in Organic and Hybrid Semiconductors to be published in Journal of Materials Chemistry C.

Submissions to the journal should contain chemistry in a materials context and should fit within the scope of Journal of Materials Chemistry C. Please see the journal’s website for more information on the journal’s scope, standards, article types and author guidelines.

This call for papers is open for the following article types:

  • Communications
  • Full papers

Open for Submissions until 25 March 2025

If you would like to contribute to this themed collection, you can submit your article directly to the online submission service for Journal of Materials Chemistry C. Please mention that this submission is a contribution to the Transport in Organic and Hybrid Semiconductors collection in the “Themed issues” section of the submission form and add a “Note to the Editor” that this is from the Open Call. The Editorial Office reserves the right to check suitability of submissions in relation to the scope of both the journal and the collection, and inclusion of accepted articles in the final themed issue is not guaranteed.

Please also note that all submissions will be subject to initial assessment and rigorous peer review to meet the usual high standards of Journal of Materials Chemistry C.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Welcoming Professor Keith Butler to the Journal of Materials Chemistry A and Materials Advances Advisory Boards

Keith Butler studied an undergraduate degree in Chemistry at Trinity College Dublin, graduating in 2004. He then completed a PhD at UCL, graduating in 2010. Following this, Keith carried out post-doctoral research in the University of Sheffield and the University of Bath, working on simulations of photovoltaics and transparent conductive oxides.

During his time at the University of Bath, Keith became interested in machine learning for the discovery and analysis of new materials. In 2018 he moved to the Rutherford Appleton Laboratory where he was involved in setting up the scientific machine learning group (SciML). In 2022 Keith moved to Queen Mary University of London as a Senior Lecturer in Green Energy Materials. In 2023 Keith re-joined UCL Chemistry as Associate Professor.

Keith’s research focuses on using a combination of data-driven methods (such as deep learning and Bayesian statistics) and quantum mechanics calculations to design new materials on computers and to help accelerate the experimental characterisation of materials. His group (the Materials Design and Informatics Group) work with other academics, national facilities and companies. Keith is a keen advocate of open science and open software and is involved in the development of several community packages. In his spare time, Keith is (overly) obsessed with fermentation; he keeps a stable of several kombucha SOCBYs and will probably try to pickle your lunch if you’re not careful!

 

An interview with Professor Butler

What does it mean to you to join the Advisory Board of Journal of Materials Chemistry A and Materials Advances?

It’s a real honour to join this Advisory Board. I am a big fan of the RSC publishing journals and think that they have been a great service to the research community in materials chemistry over the years. So, to have an opportunity to contribute to these publications and to potentially help to shape how they develop is really exciting for me.

 

What is the current biggest challenge you face in your field?

I work a lot with machine learning for materials modelling and characterisation and this is a very fast-moving field right now. I think that one of our biggest challenges is distinguishing the really important work from the noise or even worse from the work that is not properly done. As this tends to be highly interdisciplinary work, it is often hard for a single person to have the expertise to judge all aspects fully. A materials chemist may not know a variational autoencoder from a diffusion model, and likewise a computer scientist may not know a halogen from a pnictide. In this case, high-quality peer reviewed publication becomes more important than ever, providing a seal of quality that researchers know that they can trust.

 

Why do you feel that researchers should choose to publish their work in Journal of Materials Chemistry A and/or Materials Advances?

I think that these are highly respected, widely read and trusted journals. When I think of following the latest in energy materials research (which is my main materials science interest) these are some of the first journals in my RSS feed. I know that my peers also follow these journals closely and respect the research that is published in them. So, I would say for high visibility with respectability, JMC A and Materials Advances are great places to publish. In addition, the very reasonable APCs for Gold Open Access are very attractive to me, as I am a big believer in Open Science, but find that it is sometimes a costly standard to meet. It’s great that the RSC makes open access more attainable to all researchers.

 

Can you tell us about one of your latest Journal of Materials Chemistry A publications?

One of my more recent publications was last year looking at hybrid halide perovskites. I’ve been working on these materials for probably about 10 years now and there is still so much about them that we are yet to properly understand. In this paper we were looking at a particular alloy of this system where the A-site of the perovskite is a mixture of formamadinium and methyl ammonium molecules and the X site is a mixture of iodine and bromine anions. This mixture is particularly interesting as it has been shown to increase the efficiency of solar cells made with halide perovskite absorber layers. The study uses a range of computational modelling techniques to look at this structure and reveals an interplay of the effects of the structure on the dynamic and thermodynamic properties of the halide perovskite alloys. This kind of atomistic understanding is critical as researchers strive to design more stable and efficient perovskite mixtures for cheap and effective solar cells.

Mixed-anion mixed-cation perovskite (FAPbI3)0.875(MAPbBr3)0.125: an ab initio molecular dynamics study
Eduardo Menéndez-Proupin, Shivani Grover, Ana L. Montero-Alejo, Scott D. Midgley, Keith T. Butler and Ricardo Grau-Crespo
J. Mater. Chem. A, 2022,10, 9592-9603. DOI: 10.1039/D1TA10860C
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Honouring Professor Thom Palstra on the occasion of his retirement

It is with respect and admiration that we introduce this special collection published across the Journal of Materials Chemistry C and Materials Advances to honor Professor Thom Palstra on the occasion of his retirement. This virtual collection serves as a testament to Thom’s exceptional contributions to the field of materials science and his profound impact as a mentor and colleague.

Guest Edited by Yoshihiro Iwasa (RIKEN, Japan), Gabriela Maris (University of Twente, Netherlands), Beatriz Noheda (University of Groningen, Netherlands), Harold J. W. Zandvliet (University of Twente, Netherlands) and Oana D. Jurchescu (Wake Forest University, USA)

 

Read the collection here

 

A message from the Guest Editors: “This special collection showcases the breadth and depth of Prof. Palstra’s scientific legacy. The contributions, authored by colleagues, collaborators and former students, highlight the profound impact of Thom’s work on diverse areas of materials research. From fundamental discoveries to technological advancements, these articles exemplify the spirit of innovation and intellectual rigor that Thom has instilled in his students and collaborators.”

Read more in their Editorial here.

 

This collection coincides with a Farewell Symposium at University of Twente on 11th October 2024:

We hope you enjoy reading this special collection, and we wish Professor Palstra all the best for his retirement.

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)