Journal of Materials Chemistry B and Materials Advances welcomes Dr. Håkan Engqvist to our Editorial Boards

Journal of Materials Chemistry B and Materials Advances are delighted to welcome Dr. Håkan Engqvist from Department of Materials Science and Engineering, The Ångström Laboratory, Uppsala University to the Editorial Boards as a new Associate Editor.

 

Dr. Håkan Engqvist is a professor of Applied Materials Science at Uppsala University, Sweden. He holds a Master’s degree in Material Physics and a PhD in Materials Science from Uppsala University. With eight years of industry experience in ceramic materials, specializing in tooling applications and bioceramics, Dr. Engqvist joined Uppsala University as a professor in 2009.

His research focuses on the synthesis, structure, and properties of biomaterials, particularly bioceramics used in hard tissue replacement and drug delivery. Dr. Engqvist also serves as the Director of the MedTech Science and Innovation Centre at Uppsala University, contributing to the advancement of medical technology and fostering innovation. His expertise combines an academic background with industry experience. The research work aim to the understanding and development of biomaterials for critical applications in healthcare.

 

‘I am eager to collaborate with RSC to continue develop the journals. I am especially excited about the international network, working with the professional staff and the other editorial board members and of course the opportunity to stay updated on the latest research in my field.’

 

See Dr Håkan Engqvist’s replies to an interview he kindly did with us:

1. What attracted you to pursue a career in materials science and how did you get to where you are now?

My passion for science and engineering has been a driving force throughout my academic journey. When choosing my undergraduate education, I was greatly influenced by the presence of surrounding companies and the experiences of my friends who were studying engineering. As my career progressed, I made choices based on my genuine interest in the field and dedicated hard work.

 

2. Why did you choose to specialize in your specific research field?

My focus on biomaterials came after my PhD, I am very much interested in understanding and solving unmet needs.

 

3. What do you see as the biggest challenges facing researchers who work in your field?

I think that the fundamental understanding on how to control the interface between materials and living organisms is still just starting. Much more work is needed and big advancements will be made.

 

4. What excites you most about your area of research and what has been the most exciting moment of your career so far?

I am captivated by the interface between synthetic materials and living tissue. I have had a few exiting moments (for me), such as capturing high-resolution images of titanium and bone, the bonding of bone pieces, developing bioactive dental fillings, and successfully implanting a new cranioplasty implant.

 

5. Which of your Royal Society of Chemistry publications are you most proud of and why?

Yixiao Cai, Hu Li, Mikael Karlsson, Klaus Leifer, Håkan Engqvist, Wei Xia. , Biomineralization on Single Crystalline Rutile: The Modulated Growth of Hydroxyapatite by Fibronectin in a Simulated Body Fluid., RSC Advances, 6 (2016) 35507-35516.

A complicated project and it was really difficult to finalise. A lot of work behind that publication.

 

6. Why do you feel that researchers should choose to publish their work in JMCB or Materials Advances?

High quality journals, good reach and fast review process – this will lead to more views and citations of the publication.

 

Join us in welcoming Hakan to our Editorial Boards!

 

Submit your best work to Håkan Engqvist and our team of Associate Editors on Journal of Materials Chemistry B and Materials Advances now! Check out our author guidelines for information on our article types or find out more about the advantages of publishing in a Royal Society of Chemistry journal.

Keep up to date with our latest articles, reviews, collections & more by following us on Twitter, Facebook or by signing up to our E-Alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Journal of Materials Chemistry A, B and C 10th Anniversary Community Spotlight: Editorial Board

This year we are pleased to celebrate 10 years since Journal of Materials Chemistry was split into three respective journals: Journal of Materials Chemistry AB and C, each focusing on a different aspect of materials chemistry. We are grateful to our fantastic community of authors, reviewers, Board members and readers and wanted to showcase just some of them in a series of ‘Community Spotlight’ blog articles.

Next in our ‘Community Spotlight’ series, we feature some of our wonderful Editorial Board members who have supported Journal of Materials Chemistry AB or C over the years through guiding the growth and development of the journal and/or actively handling papers in their Associate Editor roles. Check out their interview responses below to find out what they like about being on the Editorial Board and how they think the field of materials chemistry will develop in the next 10 years.

 

Professor Jessica Winter

Jessica Winter is an Associate Editor for Journal of Materials Chemistry B. She is a Distinguished Professor of Engineering in the William G. Lowrie Department of Chemical and Biomolecular Engineering and the Department of Biomedical Engineering and Past Chair of the Chemical Engineering Technical Operating Council (CTOC) of the American Institute of Chemical Engineers (AIChE). She received her PhD in Chemical Engineering from the University of Texas at Austin in 2004, and completed a postdoctoral fellowship at the Center for Innovative Visual Rehabilitation at the Boston VA Hospital in 2006. Her research interests include nanoparticles for cancer imaging, diagnostics, and drug delivery; and cell migration in the brain tumor microenvironment. She is a co-founder and Chief Scientific Officer of Core Quantum Technologies, a company commercializing nanoparticle reagents for cancer diagnostics. She was named TechColumbus Innovator of the Year, Columbus Business First 40 under 40, and Columbus Business First 20 People to Know in Technology. She has received the American Physical Society (APS) Five Sigma Award, American Chemical Society (ACS) Rising Star Award and the Engineering DesignNews Golden Mouse Trap Rising Star Award; she was named to Top 25 STEM professors in Ohio; and is a fellow of the AIChE, BMES, AAAS, AIMBE, the RSC, and senior member of the IEEE.

Where do you see the materials chemistry field in the next 10 years?

There has been a dramatic rise in a focus on sustainability in the last few years that will continue to grow. This includes syntheses derived from natural materials, syntheses that reduce energy use, and elimination of toxic solvents and catalysts. There is increasing interest in the materials life cycle. Can we make materials degradable, can we recycle materials, can we make them self-healing to improve their lifetime? I work in the nanotechnology field, and there is substantial interest in ecotoxicology. How do these materials affect plant and animal ecosystems that they might enter through run-off or waste disposal. How do these materials modulate gut and soil microbiomes? It is an exciting time to be working in materials chemistry as we think about how to realize new materials while minimizing their environmental impacts.

As an Associate Editor, do you have any top tips for authors preparing their manuscript?

The most important thing for authors to convey is the novelty of their work. Authors know their research better than anyone. Try to summarize the key findings and the impact of the work and include this in the cover letter, abstract, and conclusions. When possible, try to compare work to the current state of the art to provide context for the innovation.

 

Professor Achalkumar Ammathnadu Sudhakar

 

Achalkumar Ammathnadu Sudhakar is an Associate Editor for Journal of Materials Chemistry C. He is working as a full professor at the Department of Chemistry, IIT Guwahati from 2019, where he leads the Soft Matter Research Group. He is also associated with the Centre for Sustainable Polymers at IIT Guwahati. He received his PhD from Centre for Nano and Soft Matter Sciences (CeNS) Bengaluru. He worked as a Postdoctoral Researcher at the Centre for Molecular Nano Sciences, University of Leeds, UK (2007 to 2009) and at RIKEN Advanced Science Institute, Wakoshi, Japan (2009 to 2011), before joining IIT Guwahati. He has been the recipient of Indian Liquid Crystal Society Silver Medal 2019, CRS Silver medal 2023 for his research achievements. He has also been inducted as a Fellow of Royal Society of Chemistry (FRSC) and Indian Chemical Society (FICS) in 2023.

His research interests fall in the broad area of liquid crystals, supramolecular chemistry, green chemistry, functional polymers, organogels and self-assembled organic semiconductors. He has published around 90 papers and 3 patents. He has several invited articles and hot articles to his credit. He is also serving as a Dean of Outreach Education Program at IIT Guwahati to popularise science and maths among school children. He is the life member of Indian Liquid Crystal Society, Chemical Research Society and Society for Polymer Science in India.

What do you think of Journal of Materials Chemistry C as a place to publish impactful materials chemistry research?

My independent research career was started by publishing my first paper in Journal of Materials Chemistry C, which at that time gave a platform to showcase my research. From last 10 years, I am witnessing the continuous rise of the journal, which has become the best in business for material chemists.

Where do you see the materials chemistry field in the next 10 years?

Sky is the limit ! – Materials Chemistry is such a vibrant and creative field, where you will see the molecule to do function. Utilization of experience, intuition, limitations, usefulness, practicality, creativity, curiosity, serendipity and now artificial intelligence – all these make the journey itself so adventurous and rewarding to the mankind,  if the goal is reached, then it will be an icing on cake.

 

Professor Zhen Zhou

 

Zhen Zhou is an Associate Editor for Journal of Materials Chemistry A. He earned both his B.S. (in Applied Chemistry in 1994) and Ph.D. (in Inorganic Chemistry in 1999) degrees from Nankai University, China. He joined the faculty at Nankai University as a lecturer in 1999. Two years later, he began to work as a postdoctoral fellow in Nagoya University, Japan. In 2005, he returned to Nankai University as an associate professor and became a full professor in 2011. In 2021, he moved to Zhengzhou University, China as a Distinguished Professor, and he is now Dean of the School of Chemical Engineering. His main research interest lies in the integration of high-throughput computations, experiments and machine learning for energy storage and conversion.

What do you think of Journal of Materials Chemistry A as a place to publish impactful materials chemistry research?

Journal of Materials Chemistry A is a prestigious journal that publishes high quality studies across all fields of materials chemistry, with a focus on applications in energy and sustainability. I think that Journal of Materials Chemistry A is a great place to publish your impactful materials chemistry research, as it provides a wide exposure, recognition, and dissemination of your work. Nevertheless, it is also very selective and competitive, so you need to ensure that your research is novel, significant, and well-written to have a chance of acceptance. Despite being a general journal of materials chemistry, Journal of Materials Chemistry A welcomes submissions on theoretical work, computational simulations, and machine learning, and considers them equally.

Where do you see the materials chemistry field in the next 10 years?

Materials chemistry is a dynamic and interdisciplinary field. In the next 10 years, I think that materials chemistry will continue to grow and evolve, driven by the challenges and opportunities faced by mankind. For example, addressing global issues such as hunger, health, energy, climate change, and pollution by developing new materials for renewable energy, clean water, food security, disease diagnosis and treatment, waste management, and green chemistry.

Materials chemistry will also contribute to the advancement of digital technologies and smart devices by creating new materials for data storage, communication, computation, sensing, and display. And it will embrace new paradigms and methods for materials discovery and design, such as artificial intelligence (AI), machine learning (ML), computational simulations, and high-throughput screening. These tools will help accelerate the innovation process and optimize the performance and functionality of materials.

Materials chemistry will also foster more collaboration and integration across disciplines and sectors, such as physics, biology, engineering, medicine, and industry. This will lead to the emergence of new fields and applications of materials chemistry, such as biointerfaces, biomimetics, nanomedicine, smart textiles, and wearable devices.

Materials chemistry is a fascinating and exciting field that has a lot of potential to make a positive difference in the world.

 

Professor Yana Vaynzof

Prof. Dr. Yana Vaynzof is an Associate Editor for Journal of Materials Chemistry C. She is the Chair for Emerging Electronic Technologies at the Technical University of Dresden (Germany) and a Director at the Leibniz Institute for Solid State and Materials Research Dresden. She received a B.Sc. in Electrical Engineering from the Technion – Israel Institute of Technology (Israel) in 2006 and a M. Sc. In Electrical Engineering from Princeton University (USA) in 2008. In 2011, she received a Ph.D. in Physics from the University of Cambridge (UK). Yana was a postdoctoral research associate at the Cavendish Laboratory, University of Cambridge (UK) and an assistant professor at Heidelberg University (Germany) from 2014 to 2019. Yana Vaynzof is the recipient of a number of fellowships and awards, including the ERC Starting Grant, ERC Consolidator Grant, Gordon Wu Fellowship, Henry Kressel Fellowship, Fulbright-Cottrell Award and the Walter Kalkhof-Rose Memorial Prize. Her research interests lie in the field of emerging photovoltaics focusing on the study of material and device physics of organic, quantum dot and perovskite solar cells.

What do you like most about being on the Editorial Board for Journal of Materials Chemistry C?

One of the things I like most is the opportunity to stay connected to excellent science in topics that do not directly fall into my own research activities. It allows me to see where the field of materials chemistry is evolving and how adjacent fields are developing.

 Where do you see the materials chemistry field in the next 10 years?

Progress in materials chemistry is instrumental to tackling global challenges such as climate change. I believe that in the next decade the focus of the materials chemistry field will shift more and more towards the holistic inclusion of sustainability considerations into the design, synthesis, processing and end-of-life of materials. These could range from the development of new concepts in green chemistry to new approaches to materials reuse and recycling and much more.

As an Associate Editor, do you have any top tips for authors preparing their manuscript?

My top recommendation to authors preparing their manuscript for submission to JMC C is to read articles already published in the journal in order to gain better insights into its scope, impact and style. This will also help you realise how to present your findings in a scholarly way, how to make good and informative figures as well as correctly choose the title for your manuscript.

 

Professor Claus Feldmann

 

Claus Feldmann is an Editorial Board member of Journal of Materials Chemistry B. He studied chemistry (University of Bonn) and did his doctorate in solid-state chemistry under Martin Jansen. After post-doctoral studies with Hans-Georg von Schnering (Max Planck Institute of Solid-State Research, Stuttgart), he moved to industry (Philips Research Laboratories, Aachen/Eindhoven), where he was engaged in luminescent materials. Simultaneously, he habilitated at the RWTH Aachen on nanomaterials. In 2003, he was appointed at the University of Karlsruhe, the present Karlsruhe Institute of Technology (KIT). His research interests address solid-state chemistry and functional nanomaterials, ranging from ionic-liquid-based syntheses via base-metal nanoparticles and hollow nanospheres to nanocarriers for multimodal imaging and drug delivery.

What do you like most about being on the Editorial Board for Journal of Materials Chemistry B?

As a member of the Editorial Board for Journal of Materials Chemistry B, I am fascinated by the variety of publications in the interdisciplinary area between materials and biomedical properties. It is incredible how precisely materials and material properties can be tuned today (compared to 10 years ago) and yet the complexity of human action is still orders of magnitude less than what nature has produced in biology. For me as a scientist, there is still so much to be learned.

Could you provide a brief summary of your most recent Journal of Materials Chemistry B publication?

In oncology, nanocarriers can be expected to make significant progress in achieving high efficacy at the tumour site with low side effects, avoiding drug resistance, and targeting metastases early in addition to the primary tumour. Suitable nanocarriers should contain a drug load as high as possible. They should be biodegradable and – similar to current therapy schemes with dissolved drugs – a cocktail of chemotherapeutics should be applied also with nanocarriers. To this concern, we have developed the concept of inorganic-organic hybrid nanoparticles (IOH-NPs) together with partners in biology and medicine. IOH-NPs are predominately characterized by a synthesis in water, an uncomplex composition and an unprecedented drug load. In this regard, we recently presented theranostic IOH-NPs with a cocktail of chemotherapeutic and cytostatic drugs and a drug load of 71-82 % of the total nanocarrier mass. Cell tests with different tumour cell lines, spheroids and 3D cell cultures prove efficient drug release, high efficacy and a strong synergistic effect of the drug cocktail.

(M. Khorenko, A. Meschkov, J. Napp, J. Pfeifer, J. Stier, F. Alves, U. Schepers, C. Feldmann, J. Mater. Chem. B 2023, 11, 3635-3649)

 

Thank you to all of our dedicated Editorial Board members for their support of the Journal of Materials Chemistry family of journals over the years.

We hope you enjoyed finding out more about some of our Editorial Board members. Keep an eye out for our next ‘Community Spotlight’!

If you missed any of our previous ‘Community Spotlight’ blog posts, check them all out here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Industry Spotlight: Next-generation materials to meet the ever-changing specifications of the consumer electronics evolution

A headshot of Juliane HefelResponses provided by Juliane Hefel, PPG general manager of specialty coatings & materials and Janice Mahon, Universal Display Corporation (UDC), senior vice president of technology commercialization and general manager, Commercial Sales Business. 

 

What relevance does this industry have to the readers of Materials Advances

Both: Complex small molecule organic and organometallic materials manufacturing holds immense relevance for researchers, particularly concerning the advances organic chemistry has made in the electronics industry and its potential to transform our daily lives.

Through the years, organic molecules have evolved to play an increasingly crucial role in enabling miniaturization and enhancing connectivity of electronics, such as OLEDs, organic photovoltaic cells (OPVs), and organic field-effect transistors (OFETs), and other industries that rely on material science.

OLEDs and other small organic molecule-based devices can be lightweight and flexible, enabling ultra-thin, bendable, and lightweight electronic products, including wearable devices, flexible displays, and electronic textiles.

One of the most significant advantages of small molecule organic materials in electronics is its sustainability as they can be developed to be incredibly energy efficient, potentially reducing the reliance on fossil fuels and minimizing environmental impact.

The interdisciplinary nature of materials science opens up exciting opportunities. From the lab to the plant, researchers and scientists working in the OLED industry, and manufacturing sector in general, collaborate in the design of disruptive advancements that create next-generation materials. With the potential to reshape the future of electronics and contribute to a more sustainable world, organic molecule manufacturing in general presents an exciting and impactful avenue in the field of chemistry and a doorway to diverse and high-tech career paths

 

What are your roles at PPG and UDC, respectively?

Juliane: I’m the general manager of PPG’s Specialty Coatings and Materials business. In my role, I deliver strategic and operational leadership to the business which creates solutions that enhance the surfaces and materials critical in our daily lives. Our products help secure the personal information in passports and ID cards to combat fraud, make our car tires safer and more fuel-efficient, and provide monomers, coatings and photochromic dyes in eyeglass lenses that improve and enhance your vision. We also produce energy-efficient organic light-emitting diode (OLED) materials to create the vibrant images you see on your TV, smartphone and other consumer electronics through our partnership with Universal Display Corporation (UDC). Together, we married UDC’s innovative technologies and materials with PPG’s expertise with ultra-high-purity organic material manufacturing, leading to breakthroughs in the high-efficiency phosphorescent OLEDs that fuel the display industry.

Janice: I’m the senior vice president of Technology Commercialization and general manager of Commercial Sales Business at Universal Display Corporation. I lead the transition of our high-performing, energy-efficient phosphorescent OLED (PHOLED) materials from our R&D labs in Ewing, New Jersey to the worldwide commercial market. I’m responsible for the manufacture, quality assurance and delivery of UDC’s PHOLED materials to the world’s leading display and lighting panel makers. It has been more than 20 years since I helped form the successful partnership between UDC and PPG. Through these two-plus decades, PPG and UDC have established robust systems that drive efficiency, reliability, and customer satisfaction. This unwavering commitment to assured supply and quality are critical to our strong leadership position in the OLED ecosystem.

 

What aspect of your work are you most excited about now and what do you find most challenging?

Both: Keeping up with the speed of electronic evolution presents an exciting opportunity as we look to the future. As consumer electronics technology and requirements evolve, so must our production of OLED emitters. The development of new and next-generation devices moves fast, and it takes agility and ingenuity to keep pace.

The equipment used to produce and test the products, combined with PPG and UDC’s 20-plus years of know-how, allows both companies to offer next-generation products smartly and respond to customer requests rapidly. Through this collaboration and as we experience the quick pace of product evolution in consumer electronics, PPG and UDC look forward to product launches that deliver increasingly sustainable manufacturing practices.

We’re also excited about the real power savings advantages that phosphorescent OLED technology offers. When used in smartphones, PHOLED materials are estimated to save more than 860,000 metric tons of carbon dioxide equivalent each year. Based on EPA’s calculator, this is comparable to the carbon sequestered by more than 14 million tree seedlings grown for ten years.

In May, PPG and UDC officially opened a new state-of-the-art OLED manufacturing facility in Shannon, Ireland. The site is expected to double the production capacity and diversify the worldwide manufacturing footprint for UDC’s energy-efficient phosphorescent OLED emissive materials to support the rapidly growing consumer electronics and display marketplaces.

Increasing global capacity through retrofitting an existing manufacturing plant in Shannon, we were able to pivot quickly to meet increasing customer needs now and into the future.

 

How are the materials specifications evolving in consumer electronics?

Both: UDC’s phosphorescent OLED molecules are designed to convert electricity to photons of light efficiently. Like with semiconductors, there is a requirement for extreme purity to ensure optimal function of the compound in an OLED device.

Agility is another must, as consumer electronic specifications continue to evolve. We must adopt the latest technology to make materials and monitor quality. Our focus on increasing sustainability of our manufacturing processes along with changing policies and restrictions also require innovative approaches. Flexibility is necessary to meet the exacting requirements as they continue to shift.

 

What do you see as the next big challenge to overcome in the area? (both from the consumer electronics and high-purity large scale manufacturing)

Juliane: We work with our customers and suppliers to solve problems with each new material and collaborate with partners as a key to success. From a manufacturing standpoint, we continuously evaluate how best to stay ahead of quickly changing customer requirements and needs.

With UDC, we’re actively delivering leading-edge phosphorescent PHOLED materials with leading-edge quality. Like pharmaceuticals, manufacturing phosphorescent emitters for OLEDs is a complex process to get to the precise purity level needed for materials that ultimately convert electricity into light.

Identifying and creating an environment to effectively manufacture this material requires extensive technical manufacturing know-how and will face continual evolution.

Janice: The evolution of consumer electronics continues at a rapid pace, driven by ongoing technological breakthroughs and changing consumer expectations. Our team of scientists, engineers and technicians are continuously discovering, developing and delivering next-generation phosphorescent OLED materials to meet the ever-changing and ever-evolving specifications for energy efficiency, operational lifetime and color gamut. Quickly scaling these materials from lab to high volume commercial market quantities and quality can be challenging, however, PPG and UDC’s long-standing commitment to excellence, cost-effectiveness and delivery reinforces our position as a trusted partner to the OLED industry.

 

Can you share one piece of career-related advice for early career scientists?

Juliane: Be transparent and hold yourself and others accountable for making progress and reaching goals. This builds trust in you as individual, as team player and your capabilities. I can’t emphasize enough the value of teamwork in accountability. Collective decision-making and goal agreement allows for bolder choices and calculated risk-taking.

I also always encourage a mindset that embraces change. Tap into others who also welcome change to create a multiplier effect. This type of engagement is key to developing the future. When we understand and anticipate the needs of partners and customers, we can accelerate change and becoming future-ready solution creators. With the integration of advanced technology like AI becoming increasingly important in the world, scientists should be ready for changing challenges.

Janice: Prioritize integrity in your actions and decisions, as it fosters strong relationships, inspires trust, and establishes a reputation of consistent and dependable character that will benefit your career in the long run. UDC’s core value of integrity has created a corporate culture that thrives, takes risks, and innovates. It has also been critical in establishing and solidifying our long-standing partnerships and reinforcing our position as a pioneering leader in the OLED ecosystem. In both personal and professional settings, integrity and trust are crucial for establishing credibility, cultivating healthy relationships, and achieving shared goals.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Editor’s Choice Collection: Kaushik Chatterjee

Meet our Associate Editor, Professor Kaushik Chatterjee

We are delighted to announce that for the first time we have Associate Editors from India on all three Journal of Materials Chemistry editorial boards. To celebrate our fantastic Associate Editors and our wider Indian community of authors and readers, we would like to introduce our new Associate Editor for Journal of Materials Chemistry B and Materials Advances, Kaushik Chatterjee.

To celebrate his appointment to our editorial boards, Professor Chatterjee has curated an Editor’s Choice collection. The collection brings together Professor Chatterjee’s favourite papers and reviews that have been published in Journal of Materials Chemistry B and Materials Advances so far in 2023.

 

 

Associate Editor Spotlight: Kaushik Chatterjee

 

Prof. Kaushik Chatterjee obtained a Ph.D. in Bioengineering from the Pennsylvania State University. He pursued his postdoctoral fellowship jointly at the National Institute of Standards and Technology (NIST) and the National Institutes of Health (NIH), supported by a Research Associateship from the US National Research Council. He joined the Indian Institute of Science (IISc) in Bangalore in 2011 as an Assistant Professor. He is currently a Professor in the Department of Materials Engineering and the Centre for BioSystems Science and Engineering.

His research interests lie in developing and processing materials for biomedical applications. Specifically, his group focuses on scaffolds for tissue engineering, engineering organotypic tissue models, metallic biomaterials for medical implants, additive manufacturing, 3D printing, and bioprinting.

 

 

A selection of articles included in Professor Chatterjee’s collection can be found below:

Evaluating glioblastoma tumour sphere growth and migration in interaction with astrocytes using 3D collagen-hyaluronic acid hydrogels
Yixiao Cui, Paul Lee, Jesse J. Reardon, Anna Wang, Skylar Lynch, Jose J. Otero, Gina Sizemore and Jessica O. Winter
J. Mater. Chem. B, 2023, 11, 5442-5459 DOI: 10.1039/D3TB00066D

Differentiation of snake venom using Raman spectroscopic analysis
Vera Mozhaeva, Vladislav Starkov, Denis Kudryavtsev, Kirill Prokhorov, Sergey Garnova and Yuri Utkin
J. Mater. Chem. B, 2023, 11, 6435-6442 DOI: 10.1039/D3TB00829K

Functionalization of cellulose nanofibrils to develop novel ROS-sensitive biomaterials
Carlos Palo-Nieto, Anna Blasi-Romero, Corine Sandström, David Balgoma, Mikael Hedeland, Maria Strømmea and Natalia Ferraz
Mater. Adv., 2023, 4, 1555-1565 DOI: 10.1039/D2MA01056A

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Editor’s Choice collection: Advances and New Avenues in Liquid Crystal Science

Meet our Associate Editor, A. S. Achalkumar

We are delighted to announce that for the first time we have Associate Editors from India on all three Journal of Materials Chemistry editorial boards. To celebrate our fantastic Associate Editors and our wider Indian community of authors and readers, we would like to introduce our new Associate Editor for Journal of Materials Chemistry C and Materials Advances, Professor A. S. Achalkumar.

To celebrate his appointment to our editorial boards, Professor Achalkumar has curated an Editor’s Choice collection focusing on Advances and New Avenues in Liquid Crystal Science. The collection is comprised of papers and reviews published in both journals and features many contributions from Indian authors. This collection presents the progress in several upcoming areas, where liquid crystals play a pivotal role to make a major difference – promising a bright future as they have done since the discovery of twisted nematic liquid crystal display in 1970s.

 

 

Associate Editor Spotlight: A. S. Achalkumar

Achalkumar Ammathnadu Sudhakar has been a full professor at the Department of Chemistry, IIT Guwahati since 2019, where he leads the Soft Matter Research Group. He is also associated with the Centre for Sustainable Polymers at IIT Guwahati. He received his PhD from Centre for Nano and Soft Matter Sciences (CeNS) Bengaluru. He worked as a Postdoctoral Researcher at the Centre for Molecular Nano Sciences, University of Leeds, Leeds, UK (2007 to 2009) and at RIKEN Advanced Science Institute, Wakoshi, Japan (2009 to 2011), before joining IIT Guwahati. He was the recipient of Indian Liquid Crystal Society Silver Medal in 2019, CRS Silver Medal in 2023 and FRSC for his research achievements.

Prof. Achalkumar’s research interests fall in the broad area of liquid crystals, supramolecular chemistry, functional polymers, organogels and self-assembled organic semiconductors. He has published around 90 papers and 3 patents. He has several invited articles and hot articles to his credit. He is also serving as a Dean of Outreach Education Program at IIT Guwahati where is working to popularise science and maths among school children. He is a life member of Indian Liquid Crystal Society, Chemical Research Society and Society for Polymer Science in India.

 

 

‘I am looking forward to working with Editorial Board members of Journal of Materials Chemistry C and Materials Advances to give my best to enhance reach and impact of these journals. I look forward to receiving more submissions from the Indian science community in these prestigious journals’

 

A selection of articles included in Professor Achalkumar’s collection can be found below:

Observation of helical self-assembly in cyclic triphosphazene-based columnar liquid crystals bearing chiral mesogenic units
Shruti Rani, Vidhika Punjani, Santosh Prasad Gupta, Madhu Babu Kanakala, C. V. Yelamaggad and Santanu Kumar Pal
J. Mater. Chem. C, 2023, 11, 1067–1075, DOI: 10.1039/d2tc03847a

Topological defects stabilized by a soft twist-bend dimer and quantum dots lead to a wide thermal range and ultra-fast electro-optic response in a liquid crystalline amorphous blue phase
Nurjahan Khatun, Vimala Sridurai, Katalin F. Csorbac and Geetha G. Nair
J. Mater. Chem. C, 2023, 11, 9686-9694, 10.1039/d3tc00861d

Anisotropic sol–gel transition and morphological aspects of a hierarchical network of nematic gel and a superimposed photopolymer
G. V. Varshini, D. S. Shankar Rao and S. Krishna Prasad
J. Mater. Chem. C, 2023, 11, 7682–7696, DOI: 10.1039/d3tc00991b

Study of ferro- and anti-ferroelectric polar order in mesophases exhibited by bent-core mesogens
Susanta Chakraborty, Malay Kumar Das, Christina Keith and Carsten Tschierske
Mater. Adv., 2020, 1, 3545-3555, DOI: 10.1039/d0ma00678e

Fabrication of an anodized nanoporous aluminium (AAO/Al) transparent electrode as an ITO alternative for PDLC smart windows
Rahuldeb Roy, ab Indrajit Mondal and Ashutosh K Singh
Mater. Adv., 2023, 4, 923-931, DOI: 10.1039/d2ma01007k

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Journal of Materials Chemistry 10th Anniversary Cover Showcase – August

This year, as you may know, Journal of Materials Chemistry A, B, and C are celebrating their 10th anniversary! To join in the celebrations, we’ve asked authors to find creative ways to add a ’10’ to the cover artwork and are excited to show you the results in our monthly cover showcase.

To join in the celebration, you can view the #JMCs10Years hashtag on Twitter and follow the posts for the year so far.

Here are this month’s covers:

 

Synthesis of ABCBA-type miktoarm H-shaped copolymers with poly(3-hexylthiophene) segments and their application to intrinsically stretchable photonic transistor memory

 

A high-performance “fueled” photodetector based on few-layered 2D ternary chalcogenide NiGa2S4

 

 

 

High photoactive black phase stability of CsPbI3 nanocrystals under damp-heat conditions of 85 °C and 85% relative humidity

 

 

Unveiling the role of water in enhancing the performance of zinc-ion batteries using dimethyl sulfoxide electrolyte and the manganese dioxide cathode

 

 

Black phosphorus thermosensitive hydrogels loaded with bone marrow mesenchymal stem cell-derived exosomes synergistically promote bone tissue defect repair

 

Low-voltage organic single-crystal field-effect transistors and inverters enabled by a solution processable high-k dielectric

 

 

Pressure-induced structural phase transition, irreversible amorphization and upconversion luminescence enhancement in Ln3+-codoped LiYF4 and LiLuF4

 

Magnetically driven hierarchically ordered carbonyl iron@SiO2/Ni@Ag/silicone rubber composite film for enhanced electromagnetic interference shielding with ultralow reflection

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to the poster prize winners at UK Colloids on 17-19 July 2023

Journal of Materials Chemistry B, alongside many other RSC journals, were delighted to sponsor a poster prize at UK Colloids 2023. UK Colloids 2023 is the fourth colloid science conference in this series. It continues to be jointly organised by the RSC’s Colloid and Interface Science Group and the SCI’s Colloid and Surface Science Group and will provide a perfect opportunity for UK and international researchers interested in colloid and interface science to meet, present and discuss issues related to current developments in this field.

The poster prizes were sponsored by Journal of Materials Chemistry B, Materials Horizons, Nanoscale Horizons, Nanoscale, Nanoscale Advances, Materials Advances, RSC Applied Interfaces, RSC Applied Polymers, Soft Matter, Chemical Science and RSC Books.

Check out the winners and the titles of their posters below:

Hayden Robertson, Uni of Newcastle (Australia), “Role of the solvent in specific ion effects: Polymer brushes in non-aqueous electrolytes“

E. Lin, Queen Mary University of London, “Active rechargeable selt-assembled microswimmers driven by surface phase transitions”

Casey A. Thomas, Uni of Melbourne, “Pre-flocculation for increase in novel emulsion binder agglomeration”

Gaurav Yadav, Indian Institute of Technology Ropar, “Nanobubble generation by water electrolysis”

Svenja Schmidt, University of Nottingham, “Generation of O/W nanoparticles via spontaneous emulsification in microfluidics”

Haoyang Pan, University of Manchester, “Preparation of conductive polymer-based silver nanoparticle inks for inkjet printing”

Heba Elgamodi, University of Salford, “Anisotropic Shape Library of Functionalised Metal Nanoparticles as Next Generation Antimicrobial Toolkit Against Antimicrobial Resistance”

Jacob Rumney, University of Leeds, “Synthesis and Characterisation of Non-ionic Polyacrylamide Floculation Agents for Solid-Liquid Separation”

Jang Won Shon, Queen Mary University of London, “Phase transitions of fluorotelomer alcohols at the water/alkane interface studied via molecular dynamics simulation.”

Jonathan Faber, Monash University, “Beyond SLES: Advancing Surfactant Research for Sustainable Personal Care Solutions”

Edwin Johnson and Spyridon Varlas, University of Sheffield, “Adsorption of Aldehyde-Functional Diblock Copolymer Spheres onto Surface-Grafted Polymer Brushes via Dynamic Covalent Chemistry Enables Friction Modification”

Congratulations to all the winners!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Open Call for Papers: Novel Biomedical Polymer Materials

Open Call for Papers: Novel Biomedical Polymer Materials

Guest Edited by Professor Huayu Tian and Professor Xuesi Chen

 

We are delighted to announce a special themed collection on Novel Biomedical Polymer Materials to be published across Biomaterials Science  and Journal of Materials Chemistry B. This collection is Guest Edited by:

Professor Huayu Tian (Changchun Institute of Applied Chemistry, Chinese Academy of Sciences)

Professor Xuesi Chen (Changchun Institute of Applied Chemistry, Chinese Academy of Sciences)

Submissions Deadline: 1 November 2023

Biomedical polymer materials, as materials for diagnosis, treatment and organ regeneration, have the mission of prolonging patients’ lives and improving their quality of life. Their research occupies a very important position in the fields of biotechnology, life sciences and medicine, and different fields of biomedicine have different requirements for biomedical materials. Thus, in order to promote the development of the medical field, the synthesis of new biomaterials is of great significance.

To this end, this themed collection in Journal of Materials Chemistry B and Biomaterials Science aims at providing a platform for recent developments in this rapidly evolving field and we encourage you to submit your latest research to feature in the collection.

Submissions to the journal should fit within the scope of Journal of Materials Chemistry B or Biomaterials Science – Please see the journal’s website for more information on the journal’s scope, standards, article types and author guidelines. You may submit to whichever journal you feel is most relevant to your current research. Please note that your article may be offered a transfer to the alternate journal if deemed more appropriate by the handling Editor. Articles that primarily focus on providing insight into the underlying science and performance of biomaterials within a biological environment are more suited to Biomaterials Science. whereas articles that primarily focus on demonstrating novel materials chemistry and bring a molecular picture on a given material’s suitability as a biomaterial are more suited to Journal of Materials Chemistry B.

For this collection, we strongly encourage full primary research in the way of Full Papers or Communications.

All manuscripts must be in scope for the journal and will undergo the normal initial assessment and peer review processes in line with the journal’s high standards, managed by the journal editors. Accepted manuscripts will be added to the online collection as soon as they are published and they will be featured in a regular issue of the relevant journal.

If you would like to contribute to this themed collection, please submit your article directly through the Biomaterials Science submission service or the Journal of Materials Chemistry B submission service. Please mention that your submission is a contribution to the Novel Biomedical Polymer Materials collection in the “Themed issues” section of the submission form and add a “Note to the Editor” that this is from the Open Call. The Editorial Office reserves the right to check suitability of submissions in relation to the scope of both the journal and the collection, and as such inclusion of accepted articles in the final themed collection is not guaranteed. All submissions will be subject to initial assessment and sent for peer review, if appropriate. We cannot guarantee peer review or acceptance of your submission in the journal.

If you have any questions about the collection or the submissions process, please do contact the Editorial Office at biomaterialsscience-rsc@rsc.org and they will be able to assist.

We look forward to receiving your latest work and considering it for this collection!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Open Call for Papers: Materials and Devices for the Energy Transition in Latin America themed collection in Materials Advances

We are delighted to invite papers for a new themed collection on Materials and Devices for the Energy Transition in Latin America, to be published in Materials Advances, a gold open access journal from the Royal Society of Chemistry.

Guest Editors: Professor ‪Ana Flávia Nogueira‬‬‬‬‬‬‬‬‬‬‬‬, Professor Gustavo Doubek, & Professor Hudson Zanin (UNICAMP, Brazil)

The collection will aim to gather and publish high-quality research papers, reviews, and perspectives on the latest developments in materials and devices for the energy transition in Latin America. This themed collection is aimed at a broad audience, including academics, researchers, policymakers, and industry professionals interested in the energy transition and sustainable development in Latin America.

We welcome submissions that focus on materials, devices, and characterisation techniques including but not limited to:

  • Materials for energy storage: new materials and their properties that can be used for energy storage, including batteries, supercapacitors, solar cells, hydrogen evolution and storage, biomass products and other technologies.
  • Solar energy: solar energy generation and conversion, including solar cells and solar thermal technologies.
  • Wind energy: wind energy generation, including wind turbines and energy storage technologies.
  • Bioenergy: bioenergy generation, including biofuels and biogas technologies.
  • Energy efficiency: materials and devices for improving energy efficiency, including smart grids, energy-efficient buildings, and energy-efficient appliances.
  • Green Hydrogen: PEM, SOFCs, Green hydrogen from (m)ethanol etc.
  • Scaling up challenges: projects implementation at course and their unique challenges at different parts of LATAM.

The objectives of this themed collection are to:

– Provide a platform for researchers to share their latest findings, developments, and innovations in materials and devices for the energy transition in Latin America.

– Foster collaboration and exchange of ideas among researchers, policymakers, and industry professionals working in this field in Latin America.

– Highlight the potential of materials and devices for the energy transition.

– Encourage the development and implementation of policies that support the adoption of materials and devices for the energy transition and support sustainable development in Latin America.

New submission deadline: Submit before 31st March 2024!

All submitted papers will go through the standard peer review process of Materials Advances and should meet the journal’s standard requirements as well as fit into the general scope of materials science.

Manuscripts can be submitted here https://mc.manuscriptcentral.com/ma

Please add a “note to the editor” in the submission form when you submit your manuscript to say that this is a submission for this themed collection. The Editorial Office and Guest Editors reserve the right to check suitability of submissions in relation to the scope of the collection and inclusion of accepted articles in the collection is not guaranteed. Accepted manuscripts will be added to the collection as soon as they are online, and they will be published in a regular issue of Materials Advances.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to our Journal of Materials Chemistry C poster prize winner at the Autumn meeting of the Brazilian Physical Society meeting 2023

Journal of Materials Chemistry C was happy to sponsor a poster prize, alongside PCCP, at the 2023 Autumn Meeting of the Brazilian Physical Society (EOSBF-2023)

We would like to congratulate the winners:

From the left to the right side: KENNEDY BATISTA GONÇALVES (JMCC winner), RODRIGO CAPAZ (SBF President), BASSEM YOUSSEF MAKHOUL JUNIOR (PCCP winner)

 

The Journal of Materials Chemistry C winner:

Poster Title: Portable Light Scattering Spectrometer: validation and application for a Label free optical sensing platform

Name: KENNEDY BATISTA GONÇALVES

 

The PCCP winner:

Poster Title: Simulating kinetic roughening in non-equilibrium growing interfaces using machine learning

Name: BASSEM YOUSSEF MAKHOUL JUNIOR

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)