Archive for the ‘Uncategorized’ Category

Can you treat cancer this way too?! Really?!!

Imagine a scenario where one morning, a close friend of yours calls you and painfully conveys the news of him being diagnosed with cancer and you, instead of sitting horrified and helpless, casually say “Hey don’t worry man, we have PDT!” That sounds fascinating right?! Yes, Photodynamic therapy has shown potential to do that. With the same fascination towards the idea of photodynamic therapy, inventors of PDT pursued research on this therapy and shaped an unconventional out of box method of treating cancer.  The simple mechanism of working of this technique is widely known. Drugs used in this technique are light sensitive. In response to specific light irradiated on the drug molecule, it converts surrounding molecular oxygen into form of oxygen which kills nearby cancer cells. The reasons this therapy called as out of box here are multifold. First, there are many photosensitizers easily available approved by FDA which can easily respond to specific light and produced the effect explained above. Second it makes use of naturally available oxygen molecules surrounding cancer cells. Last and importantly all the conventional drugs/ therapies for the cancer are immunosuppressive meaning they suppress our immune system after treatment unlike PDT, which is immunostimulative which stimulates immune system of the patient after treatment.

(more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A good hair day for glowing nanoparticles

By raiding their local barber’s shop, scientists in China have found the ideal raw material for an emerging class of fluorescent nanoparticles.

The desirable optical properties, chemical inertness and biocompatibility of carbon dots has led researchers to explore their application in anti-counterfeiting fields and flat panel displays…

Interested? Read the full article at Chemistry World.

Photographs of carbon dot ink patterns under UV light

Photographs of carbon dot ink patterns under UV light

The original article can be read below:

Hair-Derived Carbon Dots toward Versatile Multidimensional Fluorescent Hybrid Materials
Si-Si Liu, Cai-Feng Wang, Chen-Xiong Li, Jing Wang, Li-Hua Mao and Su Chen
J. Mater. Chem. C, 2014, Accepted Manuscript
DOI: 10.1039/C4TC00636D

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Article: A simple, low-cost CVD route to thin films of BiFeO3 for efficient water photo-oxidation

Hydrogen holds immeasurable promise in our search for alternative, sustainable, cleaner fuels. However, the simple, cheap production of hydrogen is still proving a problem. Water photolysis is a great way to achieve pure H2 and as O2 is the only side product it does not result in the harmful greenhouse gas emissions that arise from using hydrocarbons to produce H2. Unfortunately, the generation of H2 by water photolysis is challenging as the reaction that forms O2 is much slower than the H2 forming reaction. The use of an efficient photocatalyst can significantly improve the success of this process.

This paper by Moniz et al. details the development of just such a photocatalyst. In this work a bimetallic BiFeO3 catalyst is prepared using a novel method of Aerosol Assisted Chemical Vapour Deposition (AA CVD). This is the first time that this method has been used to prepare a photocatalyst of this type. The team go on to test this photocatalyst for the electrolysis of water using both UV and solar irridation and encouragingly, activity is confirmed for the BiFeO3 catalyst. Even more impressively the catalyst greatly outperforms both a commercially available photocatalyst (TiO2 Activ® glass) and another recently published photocatalyst (B-doped TiO2 films).

The novel synthetic methodology presented in this paper enables large area thin film deposition and as a result has potential for high volume applications in the future.

A simple, low-cost CVD route to thin films of BiFeO3 for efficient water photo-oxidation

Savio J. A. Moniz, Raul Quessada-Cabrera, Christopher S. Blackman, Junwang Tang, Paul Southern, Paul M. Weaver and Claire J. Carmalt,
J. Mater. Chem. A, 2014, 2, 2922-2927 C3TA14824F

H. L. Parker is a guest web writer for the Journal of Materials Chemistry blog. She currently works at the Green Chemistry Centre of Excellence, the University of York.

To keep up-to-date with all the latest research, sign-up to our

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Is it a bird? Is it a plane? Possibly, its Graphene the Wonder Material!

“Wonder material” they called it when it was discovered last decade and it started to be center of attention from 2010. To understand the reasoning behind calling graphene a wonder material, one need not be a rocket scientist. The beauty of this material is so conspicuous that it can fascinate anybody on the globe. Graphene is one the few materials in existence which is very thin, conductive, transparent and flexible at the same time. The wonder of this material’s thinness is so intriguing, that according to scientists, just ounce of graphene could cover 28 football fields. Only a single atom thick, Graphene could take electronics to the next level with much thinner, faster and cheaper components compared to the current silicon based electronics.

We all know the saying nothing is perfect, however researchers all over the globe are claiming that Graphene may not be perfect but it is close to perfect. The major challenges for making Graphene a game changer in electronics are control over chemical and physical properties by chemical functionalization and processing them upon up-scalable approaches.

Graphene composite.
Investigators addressing these major challenges have explored the field of composites of graphene with organic semi-conductors and their findings are making graphene close to perfect if not perfect. A. Schlierf, P Samori and V.Palermo brilliantly reviewed the processes involved in modification of Graphene with organic semi-conductors in the article cited below. Combining the properties of organic semiconductors like well defined and tunable band gaps with the properties of graphene like flexibility, a dream material for the semi-conductor industry can be developed.  A. Schlierf, P Samori and V.Palermo, in this article, not only review the   modification of the graphene in solid, liquid and gases phases but also briefly summarize the electronic, magnetic and optical properties of the composite. This review gives precise insight into path graphene should be taken onto to make it perfect material for electronics.

Graphene-organic composites for electronics: optical and electronic interactions in vacuum, liquids and thin solid films
A. Schlierf, P. Samori and V. Palermo
J. Mater. Chem. C, 2014, 2, 3129-3143. DOI:10.1039/C3TC32153C

Padmanabh Joshi is a guest web writer for the Journal of Materials Chemistry blog. He currently works at the Department of Chemistry, University of Cincinnati.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Article link: http://xlink.rsc.org/?doi:10.1039/c3tc32153c
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Endothelial cell thrombogenicity is reduced by ATRP-mediated grafting of gelatin onto PCL surfaces

One of the most promising areas of materials chemistry research is the creation of synthetic analogues of biological tissue. The development of such materials would reduce the need for transplants and their associated problems. For example, polymer-based, artificial vascular grafts are a promising candidate for use in bypass operations. Unfortunately, they increase the risk of increasing thrombus (blood clot) formation. This in turn can lead to risk of serious medical problems such as stroke, heart attack and pulmonary embolism.

Researchers at Nanyang Technological University in Singapore have found that using functionalised polycaprolactone (PCL) can lead to reduced thrombogenicity. PCL itself is already widely used for in vivo applications although its hydrophobicity reduces its usefulness as an artificial blood vessel. Hydrophobic materials are also thought to be unsuitable because of their weak interactions with endothelial cells (ECs) – something commonly implicated in thrombus formation. To overcome these limitations, poly(glycidyl methacrylate) (PGMA) was grown from PCL surfaces via a graft-from living polymerisation. The side chains of the PGMA were then used to attach gelatine molecules. It was found that the gelatin coat decreased the hydrophobicity of the surface leading to improved EC adhesion and a corresponding reduction in thrombogenicity.

Endothelial cell thrombogenicity is reduced by ATRP-mediated grafting of gelatin onto PCL surfaces
Gordon Minru Xiong, Shaojun Yuan, Chek Kun Tan, Jun Kit Wang, Yang Liu, Timothy Thatt Yang Tan, Nguan Soon Tan and Cleo Choong
J. Mater. Chem. B, 2014, 2, 485-493.  DOI:10.1039/C3TB20760a

James Serginson is a guest web writer for the Journal of Materials Chemistry blog. He currently works at Imperial College London carrying out research into nanocomposites.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Slow-setting bone glue for easier post-surgery access

A patient is rushed into hospital. Doctors crack the patient’s chest to operate. A life is saved, but what comes next? In order to access the heart and lungs, the sternum had to be opened, but closing it again and healing the wound is often more problematic than the surgery itself.

Researchers in Ireland and Germany have developed an adhesive to address this issue. Standard practise for sternal closure winds steel wires around the bones to immobilise them as they heal. However, displacement can occur in active patients and older bones can be weak, resulting in the wires cutting through. If the bones part again, a patient can be in agony.

Interested? Read the full article at Chemistry World.

Cohesive coupling, complexation and redox radical polymerisation work together to resist displacement

Cohesive coupling, complexation and redox radical polymerisation work together to resist displacement

The original article can be read below:

Biomimetic Hyperbranched Poly(amino ester)-based Nanocomposite as Tunable Bone Adhesive for Sternal Closure
Wenxin Wang, Hong Zhang, Ligia Bre, Tianyu Zhao, Ben Newland and Mark Dacosta
J. Mater. Chem. B, 2014, Accepted Manuscript
DOI: 10.1039/C4TB00155A

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Article: Noncytotoxic artificial bacterial flagella fabricated from biocompatible ORMOCOMP and iron coating

Targeted drug delivery has developed greatly over the past fifty years although it remains a largely uncontrolled exercise. In general, even the most effective vectors rely on passive targeting analogous to a driver travelling from Land’s End to John o’ Groats by making random turns until they see a sign saying “Welcome to John o’ Groats”.

Nano- and microrobots have the potential to offer a more guided method of drug delivery as well as facilitating new approaches to non-invasive surgery and diagnosis. A recent paper by Qiu et al. describes the preparation of a helical microrobot inspired by the flagella used to propel bacteria. To start with, polymer helices of around 10 µm in length were prepared using a two-photon polymerisation whereby a laser is used to “write” a 3D structure is photoresist. These helices were then covered in iron or iron/titanium thin films.

It was found that by using low-strength magnetic fields it was possible to control the movement of the helices through water. Pleasingly, the helices also showed no signs of cytotoxicity according to both direct cellular imaging and an MTT assay.

Noncytotoxic artificial bacterial flagella fabricated from biocompatible ORMOCOMP and iron coating
Famin Qiu, Li Zhang, Kathrin E. Peyer, Marco Casarosa, Alfredo Franco-Obregón, Hongsoo Choi and Bradley J. Nelson
J. Mater. Chem. B, 2014, 2, 357.  DOI:10.1039/C3TB20840k

James Serginson is a guest web writer for the Journal of Materials Chemistry blog. He currently works at Imperial College London carrying out research into nanocomposites.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Foaming security system gives thieves a surprise

Thieves could inadvertently destroy their intended loot if they attack a cash machine made from a material being developed by scientists in Switzerland. The self-defending system was inspired by a beetle and requires no electrical components, so could be cheaper and simpler than current security systems.

The visual effect and corresponding temperature evolution upon mechanical rupture

The visual effect and corresponding temperature evolution upon mechanical rupture

Interested? Read the full story at Chemistry World.

Self-defending anti-vandalism surfaces based on mechanically triggered mixing of reactants in polymer foils
Jonas G. Halter, Nicholas H. Cohrs, Nora Hild, Daniela Paunescu, Robert N. Grass and Wendelin Jan Stark  
J. Mater. Chem. A, 2014, Accepted Manuscript
DOI: 10.1039/C3TA15326F

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Si nanotubes ALD coated with TiO2, TiN or AL2O3 as high performance lithium ion battery anodes

The battery is one of the biggest obstacles that is limiting many energy related breakthroughs. From allowing the capture and storage of renewable energy that will accommodate the fluctuating needs of power usage, to the use of electric cars that are able to drive further without needing to be recharged. Many solutions are being sort, some of them seeming increasingly wacky, such as the use of rhubarb to make flow batteries being carried out by Harvard researchers.

Yet it is the much more traditional low-cost lithium-ion batteries that are the most popular. These batteries are already included in a range of commercially available electric cars and small electronic gadgets. The specific energy storage capacity and the charge/discharge rate of Li-ion batteries is critical for their use and increasing this life time remains a significant challenge for their further development.

One method for the improvement is to use silicon based hollow nanostructures as high energy density anodes in these batteries. Using Si as the anode material can considerably increase the energy storage capacity of the battery; however commercialisation remains limited due to the materials accelerated mechanical failure relative to conventional anode materials. This paper by Lotfabad et al, uses atomic layer desorption of TiO2, TiN and Al2O3 on to the inner, outer or both surfaces of hollow Si nanotubes in order to overcome this mechanical failure and enhance the cycling performance of the material. Their results show that by coating with TiO2 both inside and out of the nanotube the coulombic efficiency is as high as 99.9% (among the highest ever reported for this group of materials). In reality this could mean a battery lifetime of up to 1000 cycles. The results presented in this paper are extremely promising for the future of Li-ion batteries.

Si nanotubes ALD coated with TiO2, TiN or AL2O3 as high performance lithium ion battery anodes
Elmira Memarzadeh Lotfabad, Peter Kalisvaart, Alireza Kohandehghan, Kai Cui, Martin Kupsta, Behdokht Farbod and David Mitlin,
J. Mater. Chem. A, 2014, 2, 2504-2516. c3ta14302c

H. L. Parker is a guest web writer for the Journal of Materials Chemistry blog. She currently works at the Green Chemistry Centre of Excellence, the University of York.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Articles for February!

Dynachromes – dynamic electrochromic polymers capable of property tuning and patterning via multiple constitutional component exchange
Daminda Navarathne and W.G. Skene

 

Graphical abstract: Dynachromes – dynamic electrochromic polymers capable of property tuning and patterning via multiple= 

Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries
Xianyong Wu, Wenwen Deng, Jiangfeng Qian, Yuliang Cao, Xinping Ai and Hanxi Yang

Hot deformation induced bulk nanostructuring of unidirectionally grown p-type (Bi,Sb)2Te3 thermoelectric materials
Tiejun Zhu, Zhaojun Xu, Jian He, Junjie Shen, Song Zhu, Lipeng Hu, Terry M. Tritt and Xinbing Zhao

 

These papers are free to access until 18th March 2014 

To keep up-to-date with all the latest research, sign up to our RSS feed or Table of contents alert

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)