US researchers have made a transparent membrane that is highly electron and proton conductive.
Transparent materials with both ionic and electrical conductivity and mixed conducting properties are used in devices which require a membrane with both electrical and protonic conductivity but minimal light absorption– such as some water splitting solar cells. Blending conjugated polymers is one approach to achieve electrical and ionic conductivity; however, polymer membranes formed from blending two polymers often suffer from poor mechanical properties and polymer phase separation.
In this hot paper Paula T. Hammond and co-workers at Massachusetts Institute of Technology, USA, demonstrate that they can tune the ionic conductivity, the electrical, optical, and mechanical properties of PEDOT:sPPO by changing the composition ratio and by DMSO treatment. The polymer thin films become more transparent, smoother, softer, and exhibit higher proton conductivity as the sPPO ratio in PEDOT:sPPO is increased. After DMSO treatment, the polymer electrical conductivity dramatically increased without jeopardizing the protonic conductivity.
Highly transparent mixed electron and proton conducting polymer membranes: Junying Liu, Nicole R. Davis, David S. Liu and Paula T. Hammond, J. Mater. Chem., 2012, DOI: 10.1039/C2JM32296J (Advance Article)
Don’t forget to keep up-to-date with all the latest research you can sign-up for the Journal of Materials Chemistry RSS feed or Table of contents alert.
To keep up with the journal news you can Like us on Facebook or Follow us on Twitter.