This week’s hot papers – Read for free until 2nd August

Electrothermally driven structural colour based on liquid crystal elastomers Electrothermally driven structural colour based on liquid crystal elastomers
Photonic crystal structures offer tremendous potential for use in a range of applications such as optical transistors and waveguides, data storage media, and chemical sensors. Liquid crystals are good candidates to form tunable photonic crystals because they can show optical anisotropy and their refractive index can be changed by an external electric field or temperature change; however, in most cases, liquid crystals are not used as inverse opaline materials directly, but instead, infiltrated into the voids of the inverse opaline films– which limits their suitability for some applications. In this hot paper a new type of electrothermally driven photonic crystal based on liquid crystal elastomers is reported, and its optical properties driven by voltage are described. The authors say this is the first example where a pure liquid crystal elastomer is introduced into photonic crystals as an inverse opaline structure material. (J. Mater. Chem., 2012, 22, 11943-11949)

Origin of long-range orientational pore ordering in anodic films on aluminium Origin of long-range orientational pore ordering in anodic films on aluminium
Porous anodic aluminium oxide has long been used for colouring and to prevent corrosion. It’s now also finding uses in hi-tech nanostructured devices such as gas sensors, nanocapacitors and microcantilevers. In this hot paper Kirill S. Napolskii and co-workers at Lomonosov Moscow State University show that the long range in-plane orientational pore ordering originates from the anisotropy of oxidation rates of the substrate during the anodization process. This finding offers a new approach for tailoring and controlling the in-plane orientational pore ordering by crystallographic manipulation with the Al substrate. (J. Mater. Chem., 2012, 22, 11922-11926)

A chiral co-crystalline form of poly(2,6-dimethyl-1,4-phenylene)oxide (PPO) A chiral co-crystalline form of poly(2,6-dimethyl-1,4-phenylene)oxide (PPO)
The crystalline structure of an industrially relevant specialty polymer, poly(2,6-dimethyl-1,4-phenylene)oxide (PPO) is resolved for the first time in this hot paper. The structure is a co-crystalline structure of the polymer with a chiral guest molecule (α-pinene), exhibiting a 2/1 monomer-unit–guest molar ratio. The authors say the most striking feature of this co-crystalline structure is its chirality. (J. Mater. Chem., 2012, 22, 11672-11680)

Don’t forget to keep up-to-date with all the latest research you can sign-up for the Journal of Materials Chemistry RSS feed or Table of contents alert.

To keep up with the journal news you can Like us on Facebook or Follow us on Twitter.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)