Paper of the week: Highly stretchable and resilient hydrogels

Hydrogels are chemically or physically cross-linked three-dimensional networks that are water insoluble but can absorb a large amount of water or biological fluids and maintain their semisolid morphology. Besides their various applications in superabsorbents, cosmetics and food, contact lenses, actuators and sensors in the materials science domain, hydrogels have become more and more attractive in artificial implants, biomedical devices, tissue engineering and regenerative medicine, etc., due to their unique properties such as similar flexibility, high water content, and molecule diffusion to natural tissues. However, unlike natural hydrogel-like bio-tissues, such as skin, muscle, cartilage, tendon, and blood-vessel which are generally strong and resilient, classic hydrogels are often brittle and have very poor mechanical performance, including low strain to break, low toughness and high strain–stress hysteresis, especially in the high strain region. Thus, design of hydrogels with good mechanical properties, such as high toughness, high stretchability and resilience, is crucially important and has drawn the extensive interest of many scientists.

Graphical abstract: Highly stretchable and resilient hydrogels from the copolymerization of acrylamide and a polymerizable macromolecular surfactant

In this paper, Huang, Guo and co-workers developed a novel micellar cross-linking copolymerization method to prepare highly stretchable and resilient hydrogels. The polymerization was based on free-radical copolymerization of water soluble acrylamide and a polymerizable macromolecular surfactant (i.e., amphiphilic polyurethane macromonomer) which can self-assemble into micelles acting as multifunctional cross-linkers. The mechanical properties, such as breaking elongation ratio, modulus and fracture toughness can be easily adjusted by varying the concentration of the polymerizable macromolecular surfactants. In addition, the mechanical energy storage efficiency (also known as resilience) was more than 96% at a strain up to 400%. These findings established a strategy for the preparation of hydrogels that combine high extendibility with excellent resilience and may greatly benefit the further use of hydrogels in tissue engineering and other soft materials research fields.

Highly stretchable and resilient hydrogels from the copolymerization of acrylamide and a polymerizable macromolecular surfactant by Mei Tan, Tingting Zhao, He Huang and Mingyu Guo Polym. Chem. 2013, 4, 5570-5576.

Julien Nicolas is a guest web-writer and advisory board member for Polymer Chemistry. He currently works at Univ. Paris-Sud (FR) as a CNRS researcher.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)