Author Archive

MOF catalysts show great promise for the future of industrial oxidation

Metal organic frameworks (MOFs) have enjoyed a short but illustrious career to date. Much attention has focussed on their potential for gas storage, but as the field matures an emerging function of these materials is being developed to great success: MOFs as heterogeneous catalysts.

MOFs are highly porous coordination polymers comprised of metallic ‘nodes’ connected in a 3-dimensional lattice by organic ‘linkers’. This structure offers advantages of both homogeneous and heterogeneous catalysis: their large surface area and porosity offers an accessible network of active sites, they can be recovered and recycled, and they are well-characterised and crystalline with a uniformity which facilitates reproducibility, selectivity, and systematic modification.

The authors of the review entitled ‘Tunable nature of metal organic frameworks as heterogeneous solid catalysts for alcohol oxidation’ are tasked with reviewing the literature exploring catalytic MOFs developed to selectively oxidise alcohols to aldehydes and ketones, a reaction with particular relevance to the fine chemical and pharmaceutical industries.

The review divides MOF oxidation catalysts into four categories. The first are defined by having transition-metal complexes attached to the linker, with the nodes having little to no catalytic activity. They compare to the second category, which are constructed with catalytically active metal nodes. The third category comprises photocatalysts, assembled from linkers that facilitate electron transfer to the nodes upon light irradiation, while the fourth category describes MOFs containing stabilised metallic nanoparticles.

This review highlights the most promising catalysts in each category, and MOFs are evaluated on more than catalytic performance alone. Catalysts are examined which contain precious transition metals such as ruthenium and iridium, used under reaction conditions requiring stoichiometric oxidant, base and/or co-catalyst. These are succeeded by MOFs which closely approach the ideal for industry and sustainability: a catalyst with high catalytic activity constructed from earth abundant metals such as copper and iron, which requires no added base or co-catalyst, uses air as the terminal oxidant and can be used under solvent-free conditions. And although we’re not there yet, the challenge has been set.

To find out more please read:

Tuneable nature of metal organic frameworks as heterogeneous solid catalysts for alcohol oxidation
Amarajothi Dhakshinamoorthy, Abdullah M. Asirib and Hermenegildo Garcia
Chem. Commun., 2017,53, 10851-10869
DOI10.1039/C7CC05927B

About the author

Zoë Hearne is a PhD candidate in chemistry at McGill University in Montréal, Canada, under the supervision of Professor Chao-Jun Li. She hails from Canberra, Australia, where she completed her undergraduate degree. Her current research focuses on transition metal catalysis to effect novel transformations, and out of the lab she is an enthusiastic chemistry tutor and science communicator.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT ChemComm articles for October

All of the referee-recommended articles below are free to access until 13th December 2017.

Boron–nitrogen main chain analogues of polystyrene: poly(B-aryl)aminoboranes via catalytic dehydrocoupling
Diego A. Resendiz-Lara, Naomi E. Stubbs, Marius I. Arz, Natalie E. Pridmore, Hazel A. Sparkes and Ian Manners
Chem. Commun., 2017,53, 11701-11704
DOI: 10.1039/C7CC07331C, Communication

____________________________________________________

Photosensitised regioselective [2+2]-cycloaddition of cinnamates and related alkenes
Santosh K. Pagire, Asik Hossain, Lukas Traub, Sabine Kerresa and Oliver Reiser
Chem. Commun., 2017,53, 12072-12075
DOI: 10.1039/C7CC06710K, Communication

____________________________________________________

Acid-etched Layered Double Hydroxides with Rich Defects for Enhancing the Oxygen Evolution Reaction
Peng Zhou, Yanyong Wang, Chao Xie, Chen Chen, Hanwen Liu, Ru Chen, Jia Huo and Shuangyin Wang
Chem. Commun., 2017,53, 11778-11781
DOI: 10.1039/C7CC07186H, Communication

____________________________________________________

Selenoureas for anion binding as molecular logic gates
Arianna Casula, Paloma Begines, Alexandre Bettoschi, Josè G. Fernandez-Bolaños, Francesco Isaia, Vito Lippolis, Óscar López, Giacomo Picci, M. Andrea Scorciapino and Claudia Caltagirone
Chem. Commun., 2017,53, 11869-11872
DOI: 10.1039/C7CC07148E, Communcation

This article is part of the themed collection: Chemosensors and Molecular Logic

____________________________________________________

Neutron spectroscopy as a tool in catalytic science
Alexander J. O’Malley, Stewart F. Parker and C. Richard A. Catlow
Chem. Commun., 2017,53, 12164-12176
DOI: 10.1039/C7CC05982E, Feature Article

This article is part of the themed collection: Commemorating Michael Faraday (1791-1867)

____________________________________________________

D-Serine enzymatic metabolism induced formation of a powder-remoldable PAAM–CS hydrogel
Shuang Zhang, Qingcong Wei, Yinghui Shang, Qi Zhang and Qigang Wang
Chem. Commun., 2017, Advance Article
DOI: 10.1039/C7CC06733J, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Inorganic polystyrene gives old material a new backbone

Synthetic organic polymers and plastics revolutionised the 20th century and helped shape modern-day society. But a new range of materials with useful properties could be in the pipeline thanks to a catalytic method for making ‘inorganic polystyrene’.

Source: Royal Society of Chemistry
B-arylated polyaminoboranes prepared via catalytic dehydropolymerisation

Polystyrene is an important material in today’s society with its uses ranging from a protective packaging material through to disposable cutlery. Its chemical structure, like the majority of other important synthetic polymeric materials, has a backbone of carbon atoms. To discover new materials with useful properties, researchers have tried to replicate these structures using inorganic chains, with silicone materials being a recent example. Now, Ian Manners and his team from the University of Bristol, UK, have made inorganic polymers out of boron and nitrogen.

Read the full story by Jeremy Allen on Chemistry World.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT ChemComm articles for September

All of the referee-recommended articles below are free to access until 6th November 2017.

High Performance Capacitive Deionization Electrode Based on Ultrathin Nitrogen-Doped Carbon/Graphene Nano-Sandwiches
Miao Wang, Xingtao Xu, Jing Tang, Shujin Hou, Md. Shahriar A. Hossain, Likun Pan and Yusuke Yamauchi
Chem. Commun., 2017,53, 10784-10787
DOI: 10.1039/C7CC05673G, Communication

____________________________________________________

Acetylene hydrochlorination using Au/carbon: a journey towards single site catalysis
Grazia Malta, Simon J. Freakley, Simon A. Kondrat and Graham J. Hutchings
Chem. Commun., 2017, Advance Article
DOI: 10.1039/C7CC05986H, Feature Article

This article is part of the themed collection: Commemorating Michael Faraday (1791-1867)

____________________________________________________

Sydnone–alkyne cycloaddition: applications in synthesis and bioconjugation
Elodie Decuypère, Lucie Plougastel, Davide Audisio and Frédéric Taran
Chem. Commun., 2017, Advance Article
DOI: 10.1039/C7CC06405E, Feature Article

____________________________________________________

Assembly of the active center of organophosphorus hydrolase in metal–organic frameworks via rational combination of functional ligands
Mengfan Xia, Caixia Zhuo, Xuejuan Ma, Xiaohong Zhang, Huaming Sun, Quanguo Zhai and Yaodong Zhang
Chem. Commun., 2017, Advance Article
DOI: 10.1039/C7CC06270B, Communication

____________________________________________________

Inclusion of a dithiadiazolyl radical in a seemingly non-porous solid
Varvara I. Nikolayenko, Leonard J. Barbour, Ana Arauzo, Javier Campo, Jeremy M. Rawson and Delia A. Haynes
Chem. Commun., 2017, Advance Article
DOI: 10.1039/C7CC06678C, Communication

____________________________________________________

Synthesis of Trinorbornane
Lorenzo Delarue Bizzini, Thomas Müntener, Daniel Häussinger, Markus Neuburger and  Marcel Mayor
Chem. Commun., 2017, Advance Article
DOI: 10.1039/C7CC06273G, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Theoretical trinorbornane joins the real world

Scientists have successfully synthesised one of last small polycyclic hydrocarbons left to make or find in nature.1

Until recently, trinorborane (tetracyclo[5.2.2.01,6.04,9]undecane) had only existed in the Chemical Universe Database (GDB) – a database containing all possible molecules up to a certain number of atoms.2 Trinorbornane has an interesting structure where two norbornanes share a pair of neighbouring edges so it looks like three interlaced norbornanes.

Source: Royal Society of Chemistry
The two enantiomers of trinorbornane display axial chirality

Read the full story by Adrian Robinson on Chemistry World.

1 L D Bizzini et al, Chem. Commun., 2017, DOI: 10.1039/c7cc06273g (This paper is free to access until 16 November 2017.)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Carbohydrates promoted in new prebiotic theory

It’s plausible that carbohydrates formed on primordial Earth before amino acids. So say UK researchers who have shown that parent molecules to amino acids can catalyse the formation of 2-deoxy-D-ribose, a sugar found in the backbone of DNA.1

Source: Royal Society of Chemistry Amino nitriles can promote the enantioselective aldol reaction of formaldehyde and glycolaldehyde to yield D-glyceraldehyde, and the subsequent reaction of the D-glyceraldehyde with acetaldehyde to make 2-deoxy-D-ribose

We’ll never know the exact process that turned chemistry into biology, but many researchers want to get as close as they can to the truth. Paul Clarke at the University of York is one of those researchers.

Read the full story by Jennifer Newton on Chemistry World.

1 A M Steer et al, Chem. Commun., 2017, DOI: 10.1039/c7cc06083a (This paper is open access.)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Let single crystals do the heavy lifting

Researchers in the US have developed heat responsive crystalline cantilevers that are capable of lifting a metal ball almost 100 times heavier than the crystal itself.

Stimuli responsive behaviour in soft materials has blossomed in recent years, but for highly crystalline solids, such properties are still surprising, especially for materials that don’t lose their single crystalline nature in the process.

Source: Royal Society of Chemistry
Upon heating, the crystal lattice changes from herringbone packing to infinite 1D chains stacked co-facially along their π surfaces.

Jeremiah Gassensmith and colleagues at the University of Texas at Dallas and the University of North Texas, US, have developed single crystals of an N-substituted naphthalene diimide (NDI) derived organic semiconductor that can undergo a reversible phase change from its α to its β form under heating.

Read the full story by Jason Woolford on Chemistry World.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT ChemComm articles for August

All of the referee-recommended articles below are free to access until 6th October 2017.

Photoactivatable aggregation-induced emission of triphenylmethanol
Yue Zheng, Xiaokun Zheng, Yu Xianga and Aijun Tong
Chem.Commun., 2017, Advance Article
DOI: 10.1039/C7CC04693F, Communication

____________________________________________________

Orthogonal switching of self-sorting processes in a stimuli-responsive library of cucurbit[8]uril complexes
Stefan Schoder and Christoph A. Schalley
Chem. Commun., 2017, 53, 9546-9549
DOI: 10.1039/C7CC05469F, Communication

____________________________________________________

Condensing the information in DNA with double-headed nucleotides 
Mick Hornum, Pawan K. Sharma, Charlotte Reslow-Jacobsen, Pawan Kumar, Michael Petersena and Poul Nielsen
Chem. Commun., 2017,53, 9717-9720
DOI: 10.1039/C7CC05047J, Communication

____________________________________________________

High magnetic relaxivity in a fluorescent CdSe/CdS/ZnS quantum dot functionalized with MRI contrast molecules 
S. G. McAdams, D. J. Lewis, P. D. McNaughter, E. A. Lewis, S. J. Haigh, P. O’Brien and F. Tuna
Chem. Commun., 2017, Advance Article
DOI: 10.1039/C7CC05537D, Communication
This article is part of the themed collection: Commemorating Michael Faraday (1791-1867)

____________________________________________________

What [plasma used for growing] diamond can shine like flame?
Michael N. R. Ashfold, Edward J. D. Mahoney, Sohail Mushtaq, Benjamin S. Truscotta and Yuri A. Mankelevich
Chem. Commun., 2017, Advance Article
DOI: 10.1039/C7CC05568D, Feature Article
This article is part of the themed collection: Commemorating Michael Faraday (1791-1867)

____________________________________________________

Reversible structural switching of a metal-organic framework by photoirradiation
Varvara I. Nikolayenko, Simon A. Herberta and Leonard J. Barbour
Chem. Commun., 2017, Advance Article
10.1039/C7CC06074B, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2nd From Carbon-Rich Molecules to Carbon-Based Materials Conference

The 2nd From Carbon-Rich Molecules to Carbon-Based Materials Conference is to be held 7th – 10th June in Nassau, Bahamas.

This interdisciplinary conference will provide unique “fusion” opportunities for chemists, physicists and engineers having various backgrounds but sharing passion and interests in carbon-only or carbon-rich molecules and carbon-based materials. It will allow a diverse group of scientists from all over the globe to discuss the current challenges, needs and prospects of this quickly-evolving multidisciplinary field.

Dates for your diary

Early Bird- 7th December 2017

Talk Submission- 14th December 2017

Last Chance – 13th April 2018

You can click here to register now and see here for further information about the conference.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Fluorescent test strip detects deadly phosgene gas

Chinese scientists have improved the sensitivity of test strips for phosgene gas by using a different fluorophore.

Phosgene gas reacts with lung proteins, disrupting the blood–air barrier and suffocating victims. Although deadly, many chemical plants require phosgene to synthesise products such as pharmaceuticals and pesticides. But accidental leaks are a risk. In 2016, for example, a leak at Gujarat Narmada Valley Fertilizers and Chemicals in India killed four workers and affected nine others.

Source: Royal Society of Chemistry
This is the first test-strip sensing system for gaseous phosgene made with AIE-based fluorophores

 

Read the full story by Sarah Piggott on Chemistry World.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)