Author Archive

Destruction and Reconstruction of Nanorods Controlled by Visible Light

Written by Tianyu Liu, University of California, Santa Cruz

Supramolecular smart materials are a family of materials composed of several molecules. They have the ability to change their configurations in response to external stimuli such as the presence of enzymes, light irradiation, and changes in pH. This property can be manipulated for a variety of applications including drug delivery and tissue engineering.

In recent years, pH-responsive supramolecular smart materials have been intensively investigated due to the simplicity of pH alteration. However, adjusting pH can have undesired consequences. First, chemical species other than the supramolecular materials (e.g., acid and base) are needed for tuning pH. The involvement of external reagents hinders the readiness of operation. Additionally, the use of acid and base inevitably introduces waste products, which could eventually suppress the stimulus-response activity of the smart materials. Therefore, developing alternative ways to initiate the configuration modification of the supramolecular smart materials is highly desirable.

In a recent ChemComm. publication, Professor Heng-Yi Zhang, Professor Yu Liu and coworkers from Nankai University, China have developed supramolecular smart nanorods consisting of β-cyclodextrin (β-CD) and 4,4’-bipyridine-coordinated zinc ions. In the presence of protonated merocyanine (MEH) in water, the nanorods are able to dissociate upon visible light illumination and reconstruct themselves when placed in the dark (Figure above).

The method by which these structures can reconfigure involves a light-driven proton transfer process (Figure below). MEH molecules absorb energy from visible light and subsequently release their protons to the surroundings. These free protons then combine with the 4,4’-bipyridine (DPD). The protonated DPD molecules lose their coordination ability and disassemble with zinc ions. As a result, the entire nanorod structure collapses. When no light is present, the aforementioned proton transfer process is reversed and the nanorods are reformed. Such a process is highly reversible with no observable light-responsive activity loss for at least five cycles.

The demonstrated light-responsive supramolecular nanorods enable facile operations with no additional chemicals. This technology opens up endless new opportunities in remote control of light-responsive processes.

To find out more please see:

Light-controlled reversible self-assembly of nanorod suprastructures

Jie Guo, Heng-Yi Zhang, Yan Zhou and Yu Liu

DOI:10.1039/C7CC03280C

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

High Content & Phenotypic Screening 2017

High Content and Phenotypic Screening 2017 will be held at Holiday Inn, Cambridge, UK from 25th – 26th April.

This conference brings together researchers from both academia and industry, and will discuss the development of techniques and tools implemented in High Content technologies and Phenotypic Screening applications. 

Hot topics to be covered include 3D cell based screening methods, high content screening and data management, the use of model organisms and novel approaches for phenotypic screening. 

Key date:

19 April – Poster Submission Deadline

Find out more here

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Outstanding Reviewers for Chemical Communications in 2016

Following the success of Peer Review Week in September 2016 (dedicated to reviewer recognition) during which we published a list of our top reviewers, we are delighted to announce that we will continue to recognise the contribution that our reviewers make to the journal by announcing our Outstanding Reviewers each year.

We would like to highlight the Outstanding Reviewers for Chemical Communications in 2016, as selected by the editorial team, for their significant contribution to the journal. The reviewers have been chosen based on the number, timeliness and quality of the reports completed over the last 12 months.

We would like to say a big thank you to those individuals listed here as well as to all of the reviewers that have supported the journal. Each Outstanding Reviewer will receive a certificate to give recognition for their significant contribution.

Professor Martin Albrecht, Universität Bern

Dr Guanghui An, Heilongjiang University

Professor Rahul Banerjee, National Chemical Laboratory

Dr Justin Chalker, Flinders University

Dr Takashi Hirose, Kyoto University

Dr Astrid Müller, Caltech

Dr David Nelson, University of Strathclyde

Dr Kyungsoo Oh, Chung-Ang University

Dr Zhenlei Song, SiChuan University

Dr Xuehai Yan, Max Planck Institute of Colloids and Interfaces

We would also like to thank the Chemical Communications board and the General Chemistry community for their continued support of the journal, as authors, reviewers and readers.

If you would like to become a reviewer for our journal, just email us with details of your research interests and an up-to-date CV or résumé.  You can find more details in our author and reviewer resource centre

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Molecular structure is teixobactin’s pièce de résistance

Study builds scientists’ arsenal against drug-resistant superbugs

Scientists in the UK, Belgium and the Netherlands have gained a crucial understanding of the structure–activity relationship of new antibiotic, teixobactin. Since reports of its discovery in early 2015, researchers have shown it can kill a number of pathogens without them developing resistance to it.

The University of Lincoln’s Ishwar Singh explains that there are several reasons for teixobactin’s potency: ‘It uses multiple modes of action to kill resistant bacteria, this makes it very attractive since, if it worked by only one mode, bacteria could modify more easily. It is much more challenging for bacteria to mutate on multiple levels.’ Teixobactin also targets lipids in the bacteria’s cell walls, which are considered to be less able to mutate and develop resistance.

Read the full story by Hannah Dunckley on Chemistry World.

Source: © Royal Society of Chemistry
Structure of teixobactin and with the D-amino acids highlighted in red

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to the Poster Prize winners at The 20th Symposium of the Society of Silicon Chemistry

The Royal Society of Chemistry were delighted to sponsor Chemical Communications Poster Prizes at The 20th Symposium of the Society of Silicon Chemistry. This event was held from 7th – 8th October 2016 in Hiroshima, Japan and hosted by The Society of Silicon Chemistry Japan.

We would like to take the time to congratulate our prize winners!

Ms Mirei Motomatsu from Gakushuin University‘s poster was titled “Reaction of a cationic metallogermylene with nitrogen containing compounds“.

Mr Tomohiro Sugahara from Kyoto University‘s poster was titled “Synthesis and structure of cyclic compounds containing germanium atoms utilizing a digermacyclobutene derivative“.

Dr Hiromitsu Urakami, RSC Manager for Japan, awarded the winners with their certificates.

Ms Mirei Motomatsu with Dr Hiromitsu Urakami

Mr Tomohiro Sugahara with Dr Hiromitsu Urakami

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)