Congratulations to the winners of the Society for Biomaterials Postdoctoral Research Award

In April 2022, the Society for Biomaterials held their annual meeting in Baltimore, USA. Journal of Materials Chemistry B and Materials Advances sponsored this event along with companion journal Biomaterials Science.

We would like to congratulate the winners of the SFB Postdoctoral Research Award. Check out the award winners and learn about their research in our interview below.

 

Mykel Green: 1st Prize

The success of stem cell regenerative therapies has been crippled by low cell survival, poor retention in the target tissue, uncontrolled differentiation, and induction of host immune response. My work seeks to develop a PEG-based hydrogel carrier to address these concerns and improve engraftment efficiency by protecting the fragile blood-producing stem cells during direct delivery into the bone marrow and increasing cell retention through controlled cell release. Successful completion of this work and its subsequent studies will lead to an improved understanding of the pathophysiology of SCD and the development of my hydrogel system as a tool to target other bone marrow transplantation-reliant curative therapies.

1. What inspired you to go into your area of specific research?
While studying biology at Morehouse College, I fell in love with sickle cell disease. It’s a simple mutation, but the consequences are physiologically disastrous. Blood is nearly ubiquitous; therefore, all biomedical researchers can study it, but it is significantly under-resourced and under-studied relative to other conditions. I want to correct this injustice for patients with sickle cell and other health disparities.

2. What is one of the most rewarding things about your area of research?
I love creating polymers! Something about synthesis excites me, especially trying to develop a new protocol. It is akin to cooking from scratch; you always take great pride in the final product (except when results are unfavorable).

3. What are your next steps for your research/career?
In the immediate future, I hope to create a definitive body of research supporting my hydrogel carrier as a functional bone marrow transplantation modality in a non-diseased animal model. Eventually, I will begin testing in a sickle cell model and tailor the hydrogel to address its many challenges. I expect these studies to be a significant part of my early-stage investigator work, among many other related projects.

 

Teresa Rapp: 2nd Prize

Ruthenium Crosslinkers for Hydrogel Formation with Applications in Tissue Culture and Cell Delivery
My work focuses on the development of new molecular crosslinkers that respond to unique external stimuli, specifically light. This work discussed the synthesis and application of two new ruthenium-based hydrogel crosslinkers that can selectively respond to red (617 nm) and green (530 nm) light. Used in conjunction with an ortho-nitrobenzyl-based hydrogel crosslinker, I created a hydrogel system that softens in response to three unique, visible light inputs. I showed these hydrogels are cytocompatible, orthogonal, and can be used to study cellular fate in 3D.

1. What inspired you to go into your area of specific research?
A chemist by training, I was first inspired by the incredible potential to create new functional biomaterials by innovation in the chemistry space. This field has allowed me to pursue both my interest in basic science as I discover new molecules, and demonstrate their real world feasibility in a product that could transform the work of so many research groups across the world. I hope to continue to work at the forefront of biomaterial development throughout my academic career.

2. What is one of the most rewarding things about your area of research?
The depth of knowledge I get to pursue as I work in this area. I love my work in synthetic chemistry and materials development, and this area provides many opportunities for me to collaborate with bioengineers, biologists, clinicians, and many others; opportunities that allow me to learn about a vast range of natural sciences.

3. What are your next steps for your research/career?
I will be entering the tenure track faculty job market this year, looking to start my own research lab to explore the potential of these new photochemistries in the next generation of biomaterials.

 

Kimberly Nellenbach: 3rd Prize

I presented research focused on our lab’s novel hemostatic materials. We’ve developed Platelet-like Particles or PLPs that are capable of mimicking the ability of native platelets to form a platelet plug and stem bleeding during traumatic injury. My recent efforts have been focused on analyzing the in vivo safety and efficacy of these PLPs. In my research, it was determined that at an optimized dose, PLPs are able to significantly reduce blood loss across multiple models of traumatic injury without any deleterious off-target thrombotic effects.

1. What inspired you to go into your area of specific research?
Tissue engineering has been a long interest of mine because of family and friends who experienced tissue and organ damage due to injuries or chronic inflammatory illnesses.  I wanted to play an integral role in helping restore, maintain, or improve this damage.  I narrowed my focus of research on wound healing/hemostatic materials when I became part of the Advanced Wound Healing Lab at NCSU and wanted to contribute to moving this research forward.

2. What is one of the most rewarding things about your area of research?
One of the most rewarding aspects of developing hemostatic materials is that our lab is working towards filling a critical need, especially given the current nationwide blood shortage. 

3. What are your next steps for your research/career?
The next steps in my research career are to continue to explore ways to enhance wound healing and treat bleeding by investigating the efficacy of our lab’s platelet-like technology in different models of coagulopathies and impaired wound healing

 

We would also like to congratulate the following finalists for the SFB Postdoctoral Research Award:

Jason Guo

Ana Mora Boza

Jingjing Gao

 

Please join us in congratulating all the winners and the finalists of the SFB Postdoctoral Research Award 2022!

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Open call to submit your plastics research to these cross-journal themed collections on ‘Polymer Upcycling’ and ‘Plastic Conversion’

The Royal Society of Chemistry has announced an open call to submit your plastics research to our themed collections on ‘Polymer Upcycling’ and ‘Plastic Conversion’

The Royal Society of Chemistry is committed to sustainable plastics research and has published a policy statement regarding plastic waste. With increasing impact of plastic waste on the environment, it is necessary to research ways in which we can have a sustainable future for plastics.

Plastics research is interdisciplinary and involves a wide range of chemical scientists. As such, we invite you to contribute to our cross-journal themed collections by submitting your work to Journal of Materials Chemistry A, B, C, Polymer Chemistry or Catalysis Science & Technology.

 

Polymer Upcycling

Joint themed collection between Journal of Materials Chemistry A, B and C

 

 

In 2015 alone, the global waste generated by plastic packaging applications was 82.7 metric tons (Mt). Currently, waste management practices for the end-of-life plastics exploit landfilling, industrial energy recovery from municipal solid waste incineration, pyrolysis and recycling. Due to the ubiquity and necessity of plastics in our daily life, the elimination or reduction of plastics is not foreseeable in the near future and fundamentally new science is needed to describe and understand the polymers, interfaces, decomposition and upcycling of plastics. This Themed Collection aims to explore the latest developments in materials characterization, polymer design and synthesis, physical chemistry and molecular understanding of plastic decomposition and transformation that contribute to a broad knowledge base for upcycling waste plastics.

Submissions should fit within the scope of  Journal of Materials Chemistry A, Journal of Materials Chemistry B or Journal of Materials Chemistry C. We welcome high quality studies across all fields of materials chemistry in the form of full Papers, Communications and Review-type articles (Reviews, Highlights or Perspectives) and we invite authors to select the journal that best suits their submission.

 

For more information, visit our open calls page

 

Guest Edited by:

Blair Brettmann (Georgia Institute of Technology), Marco Fraga (Instituto Nacional De Technologia Brasil), Monika Gosecka (Polish Academy of Sciences) and Natalie Stingelin (Georgia Institute of Technology)

Submit your work to Journal of Materials Chemistry A, Journal of Materials Chemistry B or Journal of Materials Chemistry C now!

 

Plastic Conversion

Joint themed collection between Polymer Chemistry and Catalysis Science & Technology

 

 

 

 

Catalysts have been the main driver for the design of ever new polymers with highly diverse and specialized properties. In this themed issue, we aim to highlight research that makes use of catalysis to optimize the reverse. How can we get the most value out of plastic waste? In this quest, we especially welcome manuscripts that address the challenges unique to plastics. These include but are not limited to additive impurities; mixed polymer streams; how to contact the very viscous, high molecular weight polymer with the (micro-)porous catalyst or a cleavage agent and more broadly catalytic conversion of sustainable polymeric materials for a circular plastic economy. Unconventional approaches via photo-, electro- or mechano-catalytic approaches and combinations thereof are also very welcome. We highly encourage to place the work in the context of performance metrics of green chemistry.

Submissions should fit the scope of either Polymer Chemistry or Catalysis Science & Technology. We would suggest that articles focused on synthetic and polymer chemistry aspects would be best suited to Polymer Chemistry, whereas articles focused on catalytic and/or related methodological advances would be appropriate for Catalysis Science & Technology. The collaborative joint special issue recognizes that management of plastic wastes relies on research conducted at the intersection of polymer chemistry and catalysis. You may submit to whichever journal you feel is most relevant to your current research. Please note that your article may be offered a transfer to the alternate journal if deemed more appropriate by the handling editor.

 

For more information, visit our open calls page

 

Guest Edited by:

Professor Ina Vollmer (Utrecht University, Netherlands), Professor George Huber (University of Wisconsin-Madison, USA), Professor Haritz Sardon (POLYMAT, University of the Basque Country UPV/EHU, Spain) and Professor Zhibo Li (Qingdao University of Science and Technology, China)

Submit your work to Polymer Chemistry or Catalysis Science & Technology now!

 

If you would like to contribute to either of these themed collections, you can submit your article directly through the journal’s online submission service. Please add a “note to the editor” in the submission form when uploading your files to say that this is a contribution to the respective themed collection. The Editorial Office reserves the right to check suitability of submissions in relation to the scope of the collection, and inclusion of accepted articles in the final themed collection is not guaranteed.

If you would like more information about the ‘Polymer Upcycling’ themed collection, please email Materials-rsc@rsc.org. For more information about the ‘Plastic Conversion’ themed collection, please email Polymers-rsc@rsc.org.

We look forward to receiving your submissions and showcasing this important research in our collections.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to the poster award winners at ICSM 2022!

We would like to congratulate the following poster award winners at the 2022 International Conference on the Science and Technology of Synthetic Metals.

 

Both the Journal of Materials Chemistry A, B and C, and Materials Horizons were delighted to sponsor the Best Poster prizes.

 

 

The Journal of Materials Chemistry A Best Poster prize was awarded to Urvashi Bothra (far right)

 

The Journal of Materials Chemistry B Best Poster prize was awarded to Anni Eklund (second from right)

 

The Journal of Materials Chemistry C Best Poster prize was awarded to Paloma Dos Santos (second from left)

 

The Materials Horizons Best Poster prize was awarded to Donato Ottomano (far left)

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Open Call for Papers: Circularly Polarised Luminescence

Circularly Polarised Luminescence (CPL):

Chirality is a basic property of Nature and plays an important role in the Universe (homochirality of living systems). Chiral materials are also widely used in many areas, such as medicines and chemical reagents, catalysts, and emitters. Interestingly, chiral emitters can display circularly polarized luminescence (CPL) which is the difference of left- and right-circularly polarized light components from chiral compounds and has recently revealed many fundamental interests and potential applications. The increasing recent interest of CPL technique is attributed to instrumental development, enabling development of strongly CPL-active chiral materials or systems, and to its application in many research areas such as in bio-responsive systems and for the development of smart materials for advanced photonic and electronic technologies (quantum computing, optical data storage and 3D displays, etc).

The aim of this themed collection is to bring together cutting-edge original articles regarding the synthesis, preparation and characterization, the theoretical simulations, the circular dichroism (CD) and CPL measurements of chiral molecules or systems including organic, inorganic materials and supramolecular aggregates with fluorescence, thermally activated delayed fluorescence, phosphorescence and long after-glow properties. Furthermore, the application of these materials in organic light-emitting diode (OLED), etc., are particularly welcome. The themed collection will provide a guidance for the future rational design of chiral molecules or systems suitable for various CPL properties and applications.

We encourage submission of CPL studies on all types of chiral molecules or systems, in form of reviews or of research papers. Both experimental, theoretical and combinations works are welcome.

Submissions to the journal should contain chemistry in a materials context and should fit within the scope of Journal of Materials Chemistry C. Please see the journal’s website for more information on the journal’s scope, standards, article types and author guidelines.

If you are interested in contributing to this themed collection, please submit through the online submission system for Journal of Materials Chemistry C

Any questions, please get in touch with the Editorial Office by email.

Note:

Please add a “note to the editor” in the submission form when you submit your manuscript to say that this is a submission for the themed collection. The Editorial Office and Guest Editors reserve the right to check suitability of submissions in relation to the scope of the collection and inclusion of accepted articles in the collection is not guaranteed. All manuscripts will be subject to the journal’s usual peer review process. Accepted manuscripts will be added to the collection as soon as they are online, and they will be published in a regular issue of Journal of Materials Chemistry C.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to the poster award winners at E-MRS 2022!

We were delighted to sponsor Women in Renewable Energy (WiRE) at E-MRS 2022!

We would like to congratulate the following poster award winners at the 2022 WiRE E-MRS 2022.

The prize winners were sponsored by the Journal of Materials Chemistry A, C, and Materials Horizons

Meet the winners

Deimantė Vaitukaitytė, Kaunas University of Technology, Lithuania

Deimante Vaitukaityte obtained Bachelor (2017) and Master’s (2019) degrees in Applied Chemistry from Kaunas University of Technology (Kaunas, Lithuania). She has been a PhD student since 2019 at the same university, with research focusing on the development of hole transporting materials for perovskite solar cells. She also works as a junior researcher in prof. Vytautas Getautis research group at Kaunas University of Technology.

We were delighted to present Deimantė an award for Best Poster at WiRE E-MRS 2022.

Shegufta Upama, IMDEA Materials Institute, Spain

Shegufta hails from Dhaka, Bangladesh. She completed her Bachelor of Science in Chemical Engineering with Honors from the University of Houston in Texas, USA. In August 2020, she started her Ph.D. in Materials Science and Engineering at Texas A&M University, where she joined Dr. Micah Green’s lab. A year later, she moved to Madrid, Spain, to continue her Ph.D. research in Dr. Juan José Vilatela’s group at IMDEA Materials Institute. Her research focuses on developing CNT fiber/inorganic hybrid materials and non-conventional heating methods for the rapid and targeted processing of materials.

We were delighted to present Shegufta an award for Best Question at WiRE E-MRS 2022.

Kenedy Tabah, Catalan Institute of Nanoscience and Nanotechnology in Barcelona, Spain

Kenedy Tabah is a doctoral student at the Catalan Institute of Nanoscience and Nanotechnology in Barcelona, Spain. After obtaining a BSc in Chemistry from the University of Buea, Cameroon and an Erasmus Mundus master in Chemical Nanoengineering, he developed an ever-growing interest in nanotechnology for renewable energy. His current research comprises fabrication of Perovskite Solar Cells and analysis of their stability through Machine Learning.

We were delighted to present Kenedy an award for Best Poster at WiRE E-MRS 2022.

Francesca De Rossi, University of Rome, Italy

After her PhD degree in Telecommunications and Microelectronics Engineering on flexible dye solar cells, awarded by University of Rome ‘Tor Vergata’ in 2014, Dr De Rossi spent nearly 4 years abroad, working as a Technology Transfer Fellow at SPECIFIC Innovation and Knowledge Centre, Swansea University (UK). She was part of the PV team led by Prof T.M. Watson, focusing on the upscaling of printable perovskite solar cells, and lead of the stability activity within his group.

She is currently a fixed term researcher (RTD-A), funded by the EU H2020 project APOLO, led by Prof F. Brunetti, on smart designed, fully printed flexible perovskite solar cells (https://project-apolo.eu/).

We were delighted to present Francesca an award for Best Poster at WiRE E-MRS 2022.

 

Dr. Ludmila Cojocaru, University of Bordeaux, France

Ludmila Cojocaru received her PhD from the University of Bordeaux (France) for her work on the synthesis of semiconducting metal oxide nanoparticles and their application in liquid-state dye-sensitized solar cells. Subsequently, she was awarded by the Japan Society for Promotion of Science (JSPS) as a first post-doc fellow in the framework of the Japanese-French Associate Laboratory for Next-generation Photovoltaic Cells (LIA Next-PV) (LiaNextPV) at the University of Tokyo, and then, continue working in a national (NEDO) Japanese project at the same University. During her almost five years of work in Japan, she developed the solid-state dye-sensitized solar cells and then moved to the perovskite solar cells. As a pioneer working in the field of perovskite solar cells since the earlier stage of their discovery, she concentrated her work on the fabrication of high-performance devices focusing on interface engineering of perovskite and provided a plausible reason for the origin of IV hysteresis. Later, she moved to the University of Freiburg (Germany) where she developed the evaporation process for perovskite and applied it in tandem configuration with silicon solar cells, working in collaboration with the Fraunhofer Institute for Solar Energy (Germany). Now, she is a Junior Researcher at the University of Bordeaux in an Initiative of Excellence “Make Our Planet Great Again”. In this project, her objective is to integrate perovskite solar cells and supercapacitors connected through a common carbon extracted from biomass and fabricate sustainable energy conversion-storage devices able to keep continuous power in intermittent light.

We were delighted to present Ludmila an award for Best Poster at WiRE E-MRS 2022.

 

 

 

Fanny Baumann, Catalan Institute of Nanoscience and Nanotechnology in Barcelona, Spain

Fanny Baumann got her Master in Science Engineering at Lund University with a specialty in Nanoscience Engineering and Nanomaterials in 2020 after an eventful academic journey combining studies with professional windsurfing. For her Master Thesis work she spent one semester at LSPM EPFL supervised by Anders Hagfeldt and Eva Unger, resulting in her also participating in the Perovskite Database project. She have been in the group of Monica Lira Cantú at NMPE ICN2 since September 2021 when she started my PhD position in Material science.

We were delighted to present Fanny an award for Best Poster at WiRE E-MRS 2022.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Call for Papers: Advanced Functional Materials and Manufacturing Processes

Guest Editors: Jessica O. Winter (The Ohio State University), Jawwad Darr (University College London), John Wang (National University Singapore)

Advanced Functional Materials (AFMs): especially nanomaterials, play an important role in catalysis, optoelectronic and quantum materials, biomaterials, and energy harvesting, storage, and conversion materials. AFMs can be designed, synthesized, (or modelled) to possess different (nano)particle/cluster attributes, such as bulk and/or defect structures and surface properties. AFMs can be further consolidated into larger hierarchical arrangements, using additive manufacturing or electrospinning for example, with nano-/micro-structure or surface characteristics that impart new functionality.

Materials Processes: Research involving discovering and translating AFMs from the bench to commercial products can be challenging. Discovery synthesis approaches for new AFMs require materials to be made faster and consistently, so that properties can be compared within compositional space. Thereafter, during scale up, replicating properties can pose a number of challenges. Scale-up can result in inhomogeneous mixing and uneven mass and heat gradients that influence material function. Structure-property relationships can strongly depend on manufacturing method (e.g., thermodynamic vs. kinetic limitations). Consequently, there is a need to better understand the relationship between materials synthesis and consolidation parameters at different scales in order to maintain desired functional properties.

This themed issue aims to explore the latest developments in advanced inorganic functional materials (synthesis, modelling and simulation), novel manufacturing processes including scale up approaches, and property evaluation and optimization. Suggested contributions that address, but are not restricted to, the following topics are welcome:

Advanced Materials

  • Ceramics, metal oxides, nanoparticles, metal organic frameworks, zeolites
  • Combinatorial, structure-property relationships, theory and simulation
  • Catalysts, quantum materials, biomaterials, and energy materials

Materials Processes

  • Batch vs. flow, green synthesis/manufacturing, process control and optimization
  • Hydrothermal/solvothermal, flame, plasma, electrospinning, precipitation methods, etc.
  • Process intensification / scale up
  • Controlled heat treatments/sintering
  • Additive manufacturing/3D printing

If you are interested in contributing to this collection please get in touch with the Editorial Office by email.

Please add a “note to the editor” in the submission form when you submit your manuscript to say that this is a submission for the themed collection. The Editorial Office and Guest Editors reserve the right to check suitability of submissions in relation to the scope of the collection and inclusion of accepted articles in the collection is not guaranteed. All manuscripts will be subject to the journal’s usual peer review process. Accepted manuscripts will be added to the collection as soon as they are online, and they will be published in a regular issue of Materials Advances.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Journal of Materials Chemistry C and Materials Advances welcome Professor Erin Ratcliff to our Editorial Boards

Journal of Materials Chemistry C and Materials Advances are delighted to welcome Professor Erin Ratcliff from the University of Arizona, USA to the Editorial Boards as a new Associate Editor.

 

Prof. Erin Ratcliff in an Associate Professor of Chemical and Environmental Engineering at the University of Arizona, with courtesy appointments in Materials Science and Engineering and Chemistry and Biochemistry. She also holds a joint appointment at the National Renewable Energy Laboratory. At the University of Arizona, Prof. Ratcliff is the Director of the Laboratory for Interface Science of Printable Electronic Materials and co-Director of the Institute for Energy Solutions.  She received a PhD in Physical Chemistry at Iowa State University in 2007, where she established her love of electrochemical methods and interface science. Her research focuses on mechanisms of electron transfer and transport across interfaces, including semiconductor/electrolyte interfaces and durability of printable electronic materials, including organic semiconductors and metal halide perovskites.

 

‘I have been reading and publishing in Journal of Materials Chemistry since 2009 and have been involved with JMCC as an advisory board member. I’m very excited to be joining the team with an Associate Editorial role and I look forward to getting to know everyone!’

 

Check out some of Erin’s recent publications in Royal Society of Chemistry journals:

Ion diffusion coefficients in poly(3-alkylthiophenes) for energy conversion and biosensing: role of side-chain length and microstructure
Jonathan K. Harrisa and  Erin L. Ratcliff
J. Mater. Chem. C, 2020, 8, 13319-13327, DOI: 10.1039/D0TC03690K

 

Rationalizing energy level alignment by characterizing Lewis acid/base and ionic interactions at printable semiconductor/ionic liquid interfaces
Linze Du Hill, Michel De Keersmaecker, Adam E. Colbert, Joshua W. Hill, Diogenes Placencia, Janice E. Boercker, Neal R. Armstrong and Erin L. Ratcliff
Mater. Horiz., 2022, 9, 471-481, DOI: 10.1039/D1MH01306H

 

Stability of push–pull small molecule donors for organic photovoltaics: spectroscopic degradation of acceptor endcaps on benzo[1,2-b:4,5-b′]dithiophene cores
Kristen E. Watts, Trung Nguyen, Bertrand J. Tremolet de Villers, Bharati Neelamraju, Michael A. Anderson, Wade A. Braunecker, Andrew J. Ferguson, Ross E. Larsen, Bryon W. Larson, Zbyslaw R. Owczarczyk, Jason R. Pfeilsticker, Jeanne E. Pemberton and  Erin L. Ratcliff
J. Mater. Chem. A, 2019, 7, 19984-19995, DOI: 10.1039/C9TA06310B

 

Join us in welcoming Erin to our Editorial Boards!

 

Submit your best work to Erin Ratcliff and our team of Associate Editors on Journal of Materials Chemistry C and Materials Advances now! Check out our author guidelines for information on our article types or find out more about the advantages of publishing in a Royal Society of Chemistry journal.

Keep up to date with our latest articles, reviews, collections & more by following us on Twitter, Facebook or by signing up to our E-Alerts.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Editor’s choice web collection: luminescent metal halides, selected by Associate Editor Zhiguo Xia

We are delighted to announce a new Editor’s choice web collection on luminescent metal halides, selected by Journal of Materials Chemistry C and Materials Advances Associate Editor Zhiguo Xia.

Read the collection
“By carefully selecting the published articles from Journal of Materials Chemistry C and Materials Advances into a themed collection, I hope that the charming and the rich performances of luminescent metal halides can be witnessed by chemists, physicists, and material scientists.” Associate Editor Zhiguo Xia (South China University of Technology, China) Zhiguo Xia photo

A few examples of the articles in this collection are shown below. You can read the full collection online. All articles in the collection are free to access until the 22nd July 2022.

 

Editorial

Editor’s choice collection on luminescent metal halides: here come halide perovskites and their derivatives

Zhiguo Xia

J. Mater. Chem. C, 2022, Advance Article DOI: 10.1039/D2TC90122F

 

A selection of articles in Journal of Materials Chemistry C

 

2D layered metal-halide perovskite/oxide semiconductor-based broadband optoelectronic synaptic transistors with long-term visual memory

Youngjun Park, Min-Kyu Kim and Jang-Sik Lee

J. Mater. Chem. C, 2021, 9, 1429-1436 (DOI: 10.1039/D0TC04250A)

 

Molecularly imprinted nanocomposites of CsPbBr3 nanocrystals: an approach towards fast and selective gas sensing of explosive taggants

Eduardo Aznar-Gadea, Ivan Sanchez-Alarcon, Ananthakumar Soosaimanickam, Pedro J. Rodriguez-Canto, F. Perez-Pla, Juan P. Martínez-Pastor and Rafael Abargues

J. Mater. Chem. C, 2022, 10, 1754-1766 (DOI: 10.1039/D1TC05169E)

 

Stable down-conversion white light-emitting devices based on highly luminescent copper halides synthesized at room temperature

Lin-Tao Wang, Zhuang-Zhuang Ma, Fei Zhang, Meng Wang, Xu Chen, Di Wu, Yong-Tao Tian, Xin-Jian Li and Zhi-Feng Shi

J. Mater. Chem. C, 2021, 9, 6151-6159 (DOI: 10.1039/D1TC01037A)

 

Lanthanide-doped inorganic halide perovskites (CsPbX3): novel properties and emerging applications

Santosh Kachhap, Sachin Singh, Akhilesh Kumar Singh and Sunil Kumar Singh

J. Mater. Chem. C, 2022, 10, 3647-3676 (DOI: 10.1039/D1TC05506B)

 

A selection of articles in Materials Advances

 

Inkjet printed mesoscopic perovskite solar cells with custom design capability

Anand Verma, David Martineau, Sina Abdolhosseinzadeh, Jakob Heier and Frank Nüesch

Mater. Adv., 2020, 1, 153-160 (DOI: 10.1039/D0MA00077A)

 

Ruddlesden Popper 2D perovskites as Li-ion battery electrodes

Angus Mathieson, Mohammad Rahil, Youcheng Zhang, Wesley M. Dose, Jung Tae Lee, Felix Deschler, Shahab Ahmad and Michael De Volder

Mater. Adv., 2021,2, 3370-3377 (DOI: 10.1039/D1MA00020A)

 

The properties, photovoltaic performance and stability of visible to near-IR all inorganic perovskites

Adva Shpatz Dayan, Xinjue Zhong, Małgorzata Wierzbowska, C. E. M. de Oliveira, Antoine Kahn and Lioz Etgar

Mater. Adv., 2020,1, 1920-1929 (DOI: 10.1039/D0MA00452A)

 

Photocatalytic reduction of CO2 by halide perovskites: recent advances and future perspectives

Muhammad Ali Raza, Feng Li, Meidan Que, Liangliang Zhu and Xi Chen

Mater. Adv., 2021,2, 7187-7209 (DOI: 10.1039/D1MA00703C)

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Journal of Materials Chemistry B and Materials Advances welcome Professor Yoshiko Miura to the Editorial Boards

Journal of Materials Chemistry B and Materials Advances are delighted to welcome Professor Yoshiko Miura from Kyushu University in Japan to the Editorial Boards as a new Associate Editor.

 

 

Yoshiko Miura is currently a Professor in Chemical Engineering and Polymer Chemistry at Kyushu University, Japan. She studied polymer chemistry and biopolymer chemistry at Kyoto University under the supervision of Prof. Yukio Imanishi and Prof. Shiro Kobayashi, and received her PhD in 2000.  From 2000 to 2001, she spent her postdoctoral period at the University of Pennsylvania in Professor Virgil Percec’s group.  In 2001, she then returned to Japan and was appointed as an Assistant Professor in the Department of Biotechnology at Nagoya University. Then in 2005, she was appointed as an Associate Professor at the School of Materials Science in the Japan Advanced Institute of Technology.  From 2010 to the present, she is a Professor at Kyushu University. Her current research interests include the development of bio-based polymers of glycopolymers, biofunctional nanogels, porous polymers, and biomimetic materials.

 

Check out some of Yoshiko Miura’s recent publications in RSC journals:

 

A QCM study of strong carbohydrate–carbohydrate interactions of glycopolymers carrying mannosides on substrates
Takahiro Oh, Takeshi Uemura, Masanori Nagao, Yu Hoshino and Yoshiko Miura
J. Mater. Chem. B, 2022, 10, 2597-2601, DOI: 10.1039/D1TB02344F

Controlled polymerization for the development of bioconjugate polymers and materials
Yoshiko Miura
J. Mater. Chem. B, 2020, 8, 2010-2019, DOI: 10.1039/C9TB02418B

Controlling the block sequence of multi-block oligomer ligands for neutralization of a target peptide
Hinata Takimoto, Sho Katakami, Yoshiko Miura and Yu Hoshino
Mater. Adv., 2020, 1, 604-608, DOI: 10.1039/D0MA00149J

Screening of a glycopolymer library for GM1 mimetics synthesized by the “carbohydrate module method”
Masanori Nagao,  Takeshi Uemura, Tasuku Horiuchi, Yu Hoshino and Yoshiko Miura
Chem. Commun., 2021, 57, 10871-10874, DOI: 10.1039/D1CC04394C

 

Read our interview below to find out more about Yoshiko:

 

1. What attracted you to pursue a career in materials science and how did you get to where you are now?

I chose a career in materials chemistry because of using chemistry to contribute to industry, human resource development, and biotechnology. Since polymer chemistry was my original major, I built my career by conducting functional materials research that incorporated cutting-edge polymer chemistry. I belonged not only to the Department of Chemistry but also to Biotechnology, Materials Science, and Chemical Engineering to learn not only the peripheral materials chemistry but also the peripheral research areas, which helped me in my career development.

 

2. Why did you choose to specialize in your specific research field?

 I specialized in polymeric materials because of the many contributions that can be made by materials chemistry, especially polymer functional materials. In particular, I am interested in glycopolymers because they make use of natural substances. Glycopolymers are attractive to me because they are a fusion of synthetic chemistry, polymer chemistry, and biotechnology, and are interesting materials.

 

3. What excites you most about your area of research and what has been the most exciting moment of your career so far?

 It is very exciting to see advances in materials chemistry as new research methods are invented that one might not have thought of. Also, in my own research, it is very exciting to see a molecule that I have designed function as it should.

 

4. What has been the most challenging moment of your career so far?

 After I became independent as a PI shortly, I could not get scientific research grants, which made it difficult for my own research to survive.

 

5. What is your favourite reaction or material, and why?

 That is RAFT living radical polymerization. It is a relatively easy chemical reaction to achieve, and at the same time, the reaction is highly versatile.

 

 6. Why do you feel that researchers should choose to publish their work in Journal of Materials Chemistry B and Materials Advances?

The two journals, Journal of Materials Chemistry B and Materials Advances, have a wide range of expertise editors in materials chemistry, which ensures that the journals are properly reviewed. The journals are properly managed, and their impact factors are stable.

 

7. What attracted you to join the Editorial Boards of Journal of Materials Chemistry B and Materials Advances?

 These two journals are among the top journals in materials chemistry and are journals to which I make my own submissions. It is an honour and at the same time a very rewarding job to be able to personally contribute to the management of a journal that is at the center of materials chemistry, with a focus on bio-applications.

 

 8. The JMC and Materials Advances teams are delighted to welcome you to the Editorial Board. What are you most looking forward to when acting as Associate Editor for the journals?

 As Associate Editor, I am most looking forward to learning about the latest developments in materials chemistry and to working on activities that will enhance the importance of materials chemistry.

 

9. Why should young people study chemistry or related subjects?

 Chemistry and materials are involved in environmental issues, health care, and all matters. By studying chemistry, students can develop the ability to understand and solve the various problems of today’s world based on chemistry.

 

10. What impact do you feel that your area of research can make over the next 10 years?

 Many biofunctional materials have been published and some research is superior to the current technologies. Practical application of some excellent studies will contribute to the development of basic science and medicine as a result of biotechnology.

 

Submit your best work to Yoshiko and our team of Associate Editors on Journal of Materials Chemistry B and Materials Advances now! Check out our author guidelines for information on our article types or find out more about the advantages of publishing in a Royal Society of Chemistry journal.

Keep up to date with our latest articles, reviews, collections & more by following us on Twitter, Facebook or by signing up to our E-Alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

In memoriam of Alasdair James Campbell

 

We are honoured to introduce a special cross-journal collection of Journal of Materials Chemistry C and Sustainable Energy & Fuels in memoriam of Prof. Alasdair James Campbell.

 

Alasdair, or ‘Al’ as he was known to his colleagues, students and friends, was an exceptional scientist who made considerable impact in the fundamental research of state-of-the-art display technologies, printed photodetectors and transistors, neuromorphic computing and organic biomedical sensors. His work influenced the fields of materials chemistry, bioelectronics and materials science by providing the mechanistic understanding and methods to exploit underlying solid-state physics phenomena.

Guest Edited by Natalie Stingelin and Garry Rumbles, it is a great honour to highlight contributions from a number of Al’s friends, students and colleagues that were at the core of Al’s scientific activity, covering the fields where he had such impact: organic electronics (OLEDs, OFETs and photodetectors), charge transport in organic semiconductors, chiral optoelectronic materials, neuromorphic computing, and biomedical sensors based on organic materials, to celebrate Al’s life and science. His friends, students and colleagues will forever remember Al’s science, his kindness and his humour.

We hope you enjoy reading this collection of papers in Journal of Materials Chemistry C and Sustainable Energy & Fuels in honour of Prof. Al Campbell. All of the articles in the collection are free to access until 20 July 2022.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)