Archive for the ‘Themed Collections’ Category

Open Call for Papers: Circularly Polarised Luminescence

Circularly Polarised Luminescence (CPL):

Chirality is a basic property of Nature and plays an important role in the Universe (homochirality of living systems). Chiral materials are also widely used in many areas, such as medicines and chemical reagents, catalysts, and emitters. Interestingly, chiral emitters can display circularly polarized luminescence (CPL) which is the difference of left- and right-circularly polarized light components from chiral compounds and has recently revealed many fundamental interests and potential applications. The increasing recent interest of CPL technique is attributed to instrumental development, enabling development of strongly CPL-active chiral materials or systems, and to its application in many research areas such as in bio-responsive systems and for the development of smart materials for advanced photonic and electronic technologies (quantum computing, optical data storage and 3D displays, etc).

The aim of this themed collection is to bring together cutting-edge original articles regarding the synthesis, preparation and characterization, the theoretical simulations, the circular dichroism (CD) and CPL measurements of chiral molecules or systems including organic, inorganic materials and supramolecular aggregates with fluorescence, thermally activated delayed fluorescence, phosphorescence and long after-glow properties. Furthermore, the application of these materials in organic light-emitting diode (OLED), etc., are particularly welcome. The themed collection will provide a guidance for the future rational design of chiral molecules or systems suitable for various CPL properties and applications.

We encourage submission of CPL studies on all types of chiral molecules or systems, in form of reviews or of research papers. Both experimental, theoretical and combinations works are welcome.

Submissions to the journal should contain chemistry in a materials context and should fit within the scope of Journal of Materials Chemistry C. Please see the journal’s website for more information on the journal’s scope, standards, article types and author guidelines.

If you are interested in contributing to this themed collection, please submit through the online submission system for Journal of Materials Chemistry C

Any questions, please get in touch with the Editorial Office by email.

Note:

Please add a “note to the editor” in the submission form when you submit your manuscript to say that this is a submission for the themed collection. The Editorial Office and Guest Editors reserve the right to check suitability of submissions in relation to the scope of the collection and inclusion of accepted articles in the collection is not guaranteed. All manuscripts will be subject to the journal’s usual peer review process. Accepted manuscripts will be added to the collection as soon as they are online, and they will be published in a regular issue of Journal of Materials Chemistry C.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Call for Papers: Advanced Functional Materials and Manufacturing Processes

Guest Editors: Jessica O. Winter (The Ohio State University), Jawwad Darr (University College London), John Wang (National University Singapore)

Advanced Functional Materials (AFMs): especially nanomaterials, play an important role in catalysis, optoelectronic and quantum materials, biomaterials, and energy harvesting, storage, and conversion materials. AFMs can be designed, synthesized, (or modelled) to possess different (nano)particle/cluster attributes, such as bulk and/or defect structures and surface properties. AFMs can be further consolidated into larger hierarchical arrangements, using additive manufacturing or electrospinning for example, with nano-/micro-structure or surface characteristics that impart new functionality.

Materials Processes: Research involving discovering and translating AFMs from the bench to commercial products can be challenging. Discovery synthesis approaches for new AFMs require materials to be made faster and consistently, so that properties can be compared within compositional space. Thereafter, during scale up, replicating properties can pose a number of challenges. Scale-up can result in inhomogeneous mixing and uneven mass and heat gradients that influence material function. Structure-property relationships can strongly depend on manufacturing method (e.g., thermodynamic vs. kinetic limitations). Consequently, there is a need to better understand the relationship between materials synthesis and consolidation parameters at different scales in order to maintain desired functional properties.

This themed issue aims to explore the latest developments in advanced inorganic functional materials (synthesis, modelling and simulation), novel manufacturing processes including scale up approaches, and property evaluation and optimization. Suggested contributions that address, but are not restricted to, the following topics are welcome:

Advanced Materials

  • Ceramics, metal oxides, nanoparticles, metal organic frameworks, zeolites
  • Combinatorial, structure-property relationships, theory and simulation
  • Catalysts, quantum materials, biomaterials, and energy materials

Materials Processes

  • Batch vs. flow, green synthesis/manufacturing, process control and optimization
  • Hydrothermal/solvothermal, flame, plasma, electrospinning, precipitation methods, etc.
  • Process intensification / scale up
  • Controlled heat treatments/sintering
  • Additive manufacturing/3D printing

If you are interested in contributing to this collection please get in touch with the Editorial Office by email.

Please add a “note to the editor” in the submission form when you submit your manuscript to say that this is a submission for the themed collection. The Editorial Office and Guest Editors reserve the right to check suitability of submissions in relation to the scope of the collection and inclusion of accepted articles in the collection is not guaranteed. All manuscripts will be subject to the journal’s usual peer review process. Accepted manuscripts will be added to the collection as soon as they are online, and they will be published in a regular issue of Materials Advances.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Editor’s choice web collection: luminescent metal halides, selected by Associate Editor Zhiguo Xia

We are delighted to announce a new Editor’s choice web collection on luminescent metal halides, selected by Journal of Materials Chemistry C and Materials Advances Associate Editor Zhiguo Xia.

Read the collection
“By carefully selecting the published articles from Journal of Materials Chemistry C and Materials Advances into a themed collection, I hope that the charming and the rich performances of luminescent metal halides can be witnessed by chemists, physicists, and material scientists.” Associate Editor Zhiguo Xia (South China University of Technology, China) Zhiguo Xia photo

A few examples of the articles in this collection are shown below. You can read the full collection online. All articles in the collection are free to access until the 22nd July 2022.

 

Editorial

Editor’s choice collection on luminescent metal halides: here come halide perovskites and their derivatives

Zhiguo Xia

J. Mater. Chem. C, 2022, Advance Article DOI: 10.1039/D2TC90122F

 

A selection of articles in Journal of Materials Chemistry C

 

2D layered metal-halide perovskite/oxide semiconductor-based broadband optoelectronic synaptic transistors with long-term visual memory

Youngjun Park, Min-Kyu Kim and Jang-Sik Lee

J. Mater. Chem. C, 2021, 9, 1429-1436 (DOI: 10.1039/D0TC04250A)

 

Molecularly imprinted nanocomposites of CsPbBr3 nanocrystals: an approach towards fast and selective gas sensing of explosive taggants

Eduardo Aznar-Gadea, Ivan Sanchez-Alarcon, Ananthakumar Soosaimanickam, Pedro J. Rodriguez-Canto, F. Perez-Pla, Juan P. Martínez-Pastor and Rafael Abargues

J. Mater. Chem. C, 2022, 10, 1754-1766 (DOI: 10.1039/D1TC05169E)

 

Stable down-conversion white light-emitting devices based on highly luminescent copper halides synthesized at room temperature

Lin-Tao Wang, Zhuang-Zhuang Ma, Fei Zhang, Meng Wang, Xu Chen, Di Wu, Yong-Tao Tian, Xin-Jian Li and Zhi-Feng Shi

J. Mater. Chem. C, 2021, 9, 6151-6159 (DOI: 10.1039/D1TC01037A)

 

Lanthanide-doped inorganic halide perovskites (CsPbX3): novel properties and emerging applications

Santosh Kachhap, Sachin Singh, Akhilesh Kumar Singh and Sunil Kumar Singh

J. Mater. Chem. C, 2022, 10, 3647-3676 (DOI: 10.1039/D1TC05506B)

 

A selection of articles in Materials Advances

 

Inkjet printed mesoscopic perovskite solar cells with custom design capability

Anand Verma, David Martineau, Sina Abdolhosseinzadeh, Jakob Heier and Frank Nüesch

Mater. Adv., 2020, 1, 153-160 (DOI: 10.1039/D0MA00077A)

 

Ruddlesden Popper 2D perovskites as Li-ion battery electrodes

Angus Mathieson, Mohammad Rahil, Youcheng Zhang, Wesley M. Dose, Jung Tae Lee, Felix Deschler, Shahab Ahmad and Michael De Volder

Mater. Adv., 2021,2, 3370-3377 (DOI: 10.1039/D1MA00020A)

 

The properties, photovoltaic performance and stability of visible to near-IR all inorganic perovskites

Adva Shpatz Dayan, Xinjue Zhong, Małgorzata Wierzbowska, C. E. M. de Oliveira, Antoine Kahn and Lioz Etgar

Mater. Adv., 2020,1, 1920-1929 (DOI: 10.1039/D0MA00452A)

 

Photocatalytic reduction of CO2 by halide perovskites: recent advances and future perspectives

Muhammad Ali Raza, Feng Li, Meidan Que, Liangliang Zhu and Xi Chen

Mater. Adv., 2021,2, 7187-7209 (DOI: 10.1039/D1MA00703C)

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

In memoriam of Alasdair James Campbell

 

We are honoured to introduce a special cross-journal collection of Journal of Materials Chemistry C and Sustainable Energy & Fuels in memoriam of Prof. Alasdair James Campbell.

 

Alasdair, or ‘Al’ as he was known to his colleagues, students and friends, was an exceptional scientist who made considerable impact in the fundamental research of state-of-the-art display technologies, printed photodetectors and transistors, neuromorphic computing and organic biomedical sensors. His work influenced the fields of materials chemistry, bioelectronics and materials science by providing the mechanistic understanding and methods to exploit underlying solid-state physics phenomena.

Guest Edited by Natalie Stingelin and Garry Rumbles, it is a great honour to highlight contributions from a number of Al’s friends, students and colleagues that were at the core of Al’s scientific activity, covering the fields where he had such impact: organic electronics (OLEDs, OFETs and photodetectors), charge transport in organic semiconductors, chiral optoelectronic materials, neuromorphic computing, and biomedical sensors based on organic materials, to celebrate Al’s life and science. His friends, students and colleagues will forever remember Al’s science, his kindness and his humour.

We hope you enjoy reading this collection of papers in Journal of Materials Chemistry C and Sustainable Energy & Fuels in honour of Prof. Al Campbell. All of the articles in the collection are free to access until 20 July 2022.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Themed collection on Stability of Optoelectronic Materials and Devices

Journal of Materials Chemistry C is delighted to announce a call for papers for its latest themed collection on “Stability of Optoelectronic Materials and Devices” Guest Edited by: Yana Vaynzof (Technical University of Dresden), Zhuoying Chen (ESPCI Paris/CNRS/Sorbonne Université/Université PSL) and Dinesh Kabra (Indian Institute of Technology Bombay).

Emerging optoelectronic materials are under intense scrutiny both in terms of their fundamental properties and application in a range of electronic devices. These include, among others, organic materials, quantum dots, metal halide perovskites, metal oxides, 2D materials. These materials have already found application in solar cells, light-emitting diodes, field-effect transistors, photodetectors, lasers and many more. While the function and performance of these devices are highly important, their stability also needs to be addressed if these technologies are to find their way to industrial applications. In this themed collection, we focus on the latest insights regarding the fundamental mechanisms of material degradation, the study of active-material/device stability and the development of mitigation strategies both in terms of chemical design and device architecture engineering.

This call for papers is open for the following article types:

  • Communications
  • Full papers

Submission Deadline: 30th September 2022

If you would like to contribute to this themed collection, you can submit your article directly through the journal’s online submission service at https://mc.manuscriptcentral.com/jmchemc. Please add a “note to the editor” in the submission form when uploading your files to say that this is a contribution to the themed collection. The Editorial Office reserves the right to check suitability of submissions in relation to the scope of the collection, and inclusion of accepted articles in the final themed collection is not guaranteed.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Call for papers: Themed collection on Materials Informatics

Guest Editors: Chris Pickard (University of Cambridge, UK), Jörg Behler (Georg-August-Universität Göttingen, Germany), and Krishna Rajan (University at Buffalo, USA)

In this themed collection, we invite contributions in materials informatics. Manuscripts are encouraged in topics ranging from novel computational and experimental methods to state-of-the-art applications.

The discipline of Materials Informatics has emerged from a fusion of increasing availability of materials data, high throughput experimental and computational methods, first principles and other advanced materials models, and machine learning. It has been fuelled by the dramatic growth in available computational power, and its ubiquity.

If you are interested in contributing to this collection please get in touch with the Editorial Office by email.

Please add a “note to the editor” in the submission form when you submit your manuscript to say that this is a submission for the themed collection. The Editorial Office and Guest Editors reserve the right to check suitability of submissions in relation to the scope of the collection and inclusion of accepted articles in the collection is not guaranteed. All manuscripts will be subject to the journal’s usual peer review process. Accepted manuscripts will be added to the online collection as soon as they are online, and they will be published in a regular issue of Materials Advances.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Call for papers: Themed collection on Biomass Materials

Guest Editors: Meisha Shofner (Georgia Institute of Technology) and Andy Tennyson (Clemson University)

In this themed collection, we will collect primary research and review articles from across the area of biomass materials. Manuscripts are encouraged from a broad range of topics related to biomass materials including synthesis/processing, biological-synthetic interfaces, characterization, properties, degradation and end-of-life, lifecycle/economic analysis, and application studies.

Biomass was used by humans to formulate some of the earliest polymers, and contemporary environmental concerns have served as the impetus for the researchers and industry to return to biomass as precursors for engineered materials. Biomass materials are now poised to re-emerge as materials of construction across a range of applications that currently employ synthetic plastics and materials. In adapting biological compounds and materials for use in synthetic systems, the desired biological compound or material of interest is almost always found in extremely complex mixtures of structurally- and functionally-diverse molecules and macromolecules which are impossible to separate. Furthermore, completely removing all water from many biological compounds and materials causes them to lose the desired structure, property, or function of interest. To address these challenges and facilitate this shift in materials usage, interdisciplinary research spanning fundamental understanding of synthesis and properties to translational studies for targeted applications is needed.

If you are interested in contributing to this collection please get in touch with the Editorial Office by email.

Please add a “note to the editor” in the submission form when you submit your manuscript to say that this is a submission for the themed collection. The Editorial Office and Guest Editors reserve the right to check suitability of submissions in relation to the scope of the collection and inclusion of accepted articles in the collection is not guaranteed. All manuscripts will be subject to the journal’s usual peer review process. Accepted manuscripts will be added to the online collection as soon as they are online, and they will be published in a regular issue of Materials Advances.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Themed collection: Chiral Nanomaterials

We invite you to read a new themed collection in Materials Advances on chiral nanomaterials.

We are pleased to inform you that this new themed issue has now been published online.

Read the collection

Guest Edited by Nicholas A. Kotov (University of Michigan, USA), Luis M. Liz-Marzán (CIC biomaGUNE, Spain), and Qiangbin Wang (SINANO, China).

Chiral nanostructures is one of the most rapidly developing research fields encompassing chemistry, physics, and biology. The rise to academic prominence of chiral nanostructures was fuelled by their giant optical activity and the fundamental structural parallels between biotic and abiotic structures with mirror asymmetry. This themed collection provides a snapshot of concepts being developed by a diverse spectrum of scientists around the world working in chiral nanostructures from metals, semiconductors and ceramics. Many fundamental discoveries in this area are expected that are likely to encompass multiscale chirality transfer, chiral surfaces, biological signalling, and circularly polarized emitters. Technological applications being pursued along the way of fundamental studies include biosensing, healthcare, chiral photonics, and sustainable catalysis.

Articles in the collection are published in Materials Advances and they are all freely accessible with open access. A small selection of articles from the collection are provided below.

(more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New collection: Advances in Energy Materials

We are delighted to share with you a new collection of articles highlighting some of the most popular recent articles published in Materials Advances on energy materials. Containing both reviews and original research, the collection includes work on batteries, device fabrication, supercapacitors, and more.

Read the collection here

Below is a snapshot of some of the papers in the collection. We hope you enjoy reading these gold open access articles.

Review

Direct ink writing of energy materials, Tagliaferri, A. Panagiotopoulos and C. Mattevi, Mater. Adv., 2021, 2, 540-563 DOI: 10.1039/D0MA00753F

Communication

Realizing poly(ethylene oxide) as a polymer for solid electrolytes in high voltage lithium batteries via simple modification of the cell setup, Lukas Stolz, Gerrit Homann, Martin Winter and Johannes Kasnatscheew, Mater. Adv., 2021, 2, 3251-3256 DOI: 10.1039/D1MA00009H

Paper

Influence of La3+ induced defects on MnO2–carbon nanotube hybrid electrodes for supercapacitors, Nilanjan Chakrabarty, Monalisa Char, Satheesh Krishnamurthy and Amit K. Chakraborty, Mater. Adv., 2021, 2, 366-375 DOI: 10.1039/D0MA00696C

 

Sign up now to keep up to date on Twitter, Facebook, and our e-alerts.

Visit our website – rsc.li/materials-advances

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Journal of Materials Chemistry A: themed issue on single-atom catalysis

We are delighted to present this Journal of Materials Chemistry A themed issue on single-atom catalysis, guest edited by Zhiqun Lin (Georgia Institute of Technology, USA), Maria Escudero Escribano (University of Copenhagen, Denmark) and Jun Li (Tsinghua University, China).

Single-atom catalysts (SACs) with isolated metal atoms dispersed on solid supports have emerged as a new frontier in catalysis science owing to their great potential to bridge the gap between heterogeneous and homogeneous catalysis. The active centers of this new class of materials possess unique electronic structure and unsaturated coordination environments, which have been proven to improve catalytic activity in a variety of reactions. Moreover, the homogeneity in the active sites and geometric structure of SACs, which show similarities to their homogeneous catalyst analogs, afford them a great potential to enhance selectivity because of similar spatial and electronic interactions to substrates.

To this end, this themed collection of Journal of Materials Chemistry A aims to provide a platform for recent developments in this rapidly evolving field of SACs including synthetic strategies, selectivity regulation, theoretical understanding of the catalytic activity and stability, single-atom alloy, support effect, and novel applications in electrocatalysis, photocatalysis, photoelectrocatalysis, selective hydrogenation, and other fields. We hope that readers find this themed collection informative and useful.

All of the articles in the collection are free to access until 18 April 2022. A selection of articles from the issue is provided below.

 

 Editorial

Recent progress and perspectives on single-atom catalysis

Zhiqun Lin, María Escudero-Escribano and Jun Li

J. Mater. Chem. A, 2022, 10, 5670-5672 DOI: 10.1039/D2TA90050E

 

 Reviews

 

Support-based modulation strategies in single-atom catalysts for electrochemical CO2 reduction: graphene and conjugated macrocyclic complexes
Zhanzhao Fu, Mingliang Wu, Yipeng Zhou, Zhiyang Lyu, Yixin Ouyang, Qiang Li and Jinlan Wang
J. Mater. Chem. A, 2022, 10, 5699-5716 DOI: 10.1039/D1TA09069K

 

Synergistically enhanced single-atomic site catalysts for clean energy conversion

Fa Yang and Weilin Xu

J. Mater. Chem. A, 2022, 10, 5673-5698 DOI: 10.1039/D1TA08561A

 

Articles

 

Metal coordination in C2N-like materials towards dual atom catalysts for oxygen reduction
Jesús Barrio, Angus Pedersen, Jingyu Feng, Saurav Ch. Sarma, Mengnan Wang, Alain Y. Li, Hossein Yadegari, Hui Luo, Mary P. Ryan, Maria-Magdalena Titirici and Ifan. E. L. Stephens
J. Mater. Chem. A, 2022, 10, 6023-6030 DOI: 10.1039/D1TA09560A

Multiscale porous single-atom Co catalysts for epoxidation with O2
Xiao Chen, Yong Zou, Mingkai Zhang, Wangyan Gou, Sai Zhang and Yongquan Qu
J. Mater. Chem. A, 2022, 10, 6016-6022 DOI: 10.1039/D1TA09227H

Zinc/graphitic carbon nitride co-mediated dual-template synthesis of densely populated Fe–Nx-embedded 2D carbon nanosheets towards oxygen reduction reactions for Zn–air batteries
Xiao-Fei Gong, Yun-Long Zhang, Lei Zhao, Yun-Kun Dai, Jia-Jun Cai, Bing Liu, Pan Guo, Qing-Yan Zhou, Ichizo Yagi and Zhen-Bo Wang
J. Mater. Chem. A, 2022, 10, 5971-5980 DOI: 10.1039/D1TA08007E

 

We hope you enjoy reading this collection of papers in Journal of Materials Chemistry A on single atom catalysis and guest edited by Zhiqun Lin, Maria Escudero Escribano and Jun Li.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)