Archive for the ‘Open call for papers’ Category

Open Call for papers: Emerging thermoelectric materials themed collection in Materials Advances

We are delighted to invite papers for a new themed collection on emerging thermoelectric materials, to be published in Materials Advances, a gold open access journal from the Royal Society of Chemistry.

 

Guest Editors:

Dr Krishna Nama Manjunatha, Emerging Technologies Research Centre, De Montfort University, UK,

Prof. Satyajit Sahu, Department of Physics, Indian Institute of Technology, Jodhpur, India,

Prof. Mona Zebarjadi, University of Virginia, USA,

Prof. Shashi Paul, Emerging Technologies Research Centre, De Montfort University, UK

We welcome the latest research on new and novel thermoelectric materials and their uses in thermoelectric generators (TEGs) for energy harvesting applications.

This collection will cover (but not be limited to) the following topics:

  1. Novel thermoelectric materials for TEGs
  2. Advanced synthesis and processing techniques for thermoelectric materials
  3. Nanoscale materials for TEGs
  4. High-throughput and combinatorial approaches for thermoelectric materials discovery
  5. Advanced characterisation techniques for thermoelectric materials and devices
  6. Theoretical and computational methods for predicting and optimizing thermoelectric properties
  7. Novel approaches to enhance the performance of thermoelectric materials in TEGs
  8. Applications of thermoelectric materials in waste heat recovery, solar energy conversion, and other energy harvesting applications
  9. Challenges and opportunities in the development of thermoelectric materials for TEGs.
  10. Novel deposition methods, synthesis and characterisation of novel nanomaterials for thermoelectric applications.
  11. Advances in silicon nanostructures for thermoelectric applications.
  12. New trends in novel alloy materials and investigation of their properties for TEG applications

If you are interested in contributing to this collection, please get in touch with the Editorial Office or directly submit to: https://mc.manuscriptcentral.com/ma (Please add a “note to the editor” in the submission form when you submit your manuscript to say that this is a submission for this themed collection.)

Submission deadline: Submit before 2nd September 2024!

All submitted papers will go through the standard peer review process of Materials Advances and should meet the journal’s standard requirements as well as fit into the general scope of materials science. The Editorial Office and Guest Editors reserve the right to check suitability of submissions in relation to the scope of the collection and inclusion of accepted articles in the collection is not guaranteed. Accepted manuscripts will be added to the collection as soon as they are online, and they will be published in a regular issue of Materials Advances.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Open Call – Multimodal Remote Actuation and Sensing in Polymers for Advanced Applications

Now open for submissions

A new themed collection in Materials Advances will focus on the theory, the manufacturing, the characterization, and the applications of stimuli-responsive polymers, with particular emphasis on their remote actuation.

Actuators play a crucial and indispensable role in shaping the landscape of modern technology. These remarkable devices are the driving force behind the controlled motion and enable a wide array of applications across various industries. Customized functionality and optimized performance, leading to versatile and adaptable actuation systems, can be achieved through the capability of designing and tailoring properties in polymer actuators. To reach this goal, a reliable, thermodynamically-consistent and computationally affordable multiphysics modeling plays a crucial role. Following a thermodynamically-consistent approach is essential to properly couple mechanics with other realms of physics, such as  actuation and sensing can be studied within the same theoretical framework. Additionally, the development of computationally affordable modeling techniques enables efficient and practical analysis along with the exploration of a wide range of actuator designs and operating conditions. The integration of these two modeling features not only promotes optimized analysis and design but also enhances the fundamental understanding of stimuli-responsive. Ad hoc experimental characterization facilitating the identification of the model parameters constitutes a key aspect of this process.; this should possibly leverage on the duality between actuation and sensing.

The integration of 0D, 1D, and 2D nanomaterials in polymer composites revolutionizes the multimodal actuation and control and offers unprecedented miniaturization and enhanced functionality. Moreover, development of Hybrid nanocomposites further expands the possibilities by combining different materials, resulting in synergistic effects and improved actuation performance. In recent times, actuators based on biodegradable and natural polymers are gaining significant importance. These materials not only offer sustainable alternatives but also exhibit impressive actuation properties. This enables actuators to cater to a wide range of application-specific requirements, from soft robotics to adaptive structures. These actuators are revolutionizing robotics, healthcare, automation, and many other domains. Their unique capabilities, such as precise motion control and adaptive response, enable the development of innovative solutions and pave the way for new technological advancements.

The goal of this themed collection will be to bring together contributions concerned with the most recent advances in the multimodal actuation and sensing of polymers. Topics include, but are not limited to:

  • Designing and tailoring properties in polymer actuators
  • 0D, 1D, and 2D nanomaterials for remote actuation in composites
  • Hybrid nanocomposites for remote actuation
  • Biodegradable/natural polymeric actuators
  • Stimuli for enhanced remote control in polymer actuators
  • Breakthroughs and transformative applications of actuators
  • Thermodynamically-consistent multiphysics modeling of stimuli-responsive polymers
  • Modeling charged species and solvent transports in ionic-electroactive polymers
  • Ionic polymer metal composites: characterization of boundary layers of charged species and performance as a function of the environmental conditions

We look forward to seeing your latest work in this field!

Guest Edited by

Lorenzo Bardella, University of Brescia, Italy
Mohammad Luqman, Taibah University, Saudi Arabia
Vinay Deep Punetha, P P Savani University, India

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Molecular Scale Electronics – Open Call for Papers

Journal of Materials Chemistry C are pleased to announce an open call for papers to contribute to our upcoming collection on ‘Molecular Scale Electronics

The concept of using molecules as electronic components has received significant attention over the past 3 decades, initially motivated by the decreasing size of semiconductor-based circuit elements in line with Moore’s Law. It is now recognized that molecular devices can demonstrate properties unique from those observed in conventional electronics, resulting from quantum interference effects, changes in molecular redox state and/or the immediate nanoscale environment (solvent, temperature, light, magnetic field). With robust and reproducible measurement techniques now established, and great gains made in reconciling experimental and theoretical results, attention has turned to the discovery of useful wires, switches, diodes, and resistors – and how best to utilize them. 

This Journal of Materials Chemistry C collection will capture the cutting-edge innovations in synthesis, measurement, data science, and theory that are driving this field forward.

 

 

Guest Edited by: 

 

Timothy A. Su

Assistant Professor

University of California, Riverside

Timothy A. Su is an Assistant Professor in the Department of Chemistry and Materials Science and Engineering Program at the University of California, Riverside. He received his B.S. in Chemistry from the University of California, Berkeley in 2011 working in Prof. Jean Fréchet’s laboratory. Tim obtained his PhD in Chemistry from Columbia University in 2016 as an NSF Graduate Fellow with Prof. Colin Nuckolls. Tim returned to UC Berkeley as an NIH Postdoctoral Fellow with Prof. Chris Chang before starting his independent career in 2019. His laboratory at UC Riverside focuses on the synthesis of inorganic clusters and polymers and exploration of their quantum transport and optoelectronic properties.

 

 

Michael S. Inkpen

Assistant Professor

University of Southern California


Michael S. Inkpen is an Assistant Professor in the Department of Chemistry at the University of Southern California (USC). He obtained his M.Chem. from Durham University in 2008, and his Ph.D. from Imperial College London in 2013 under the mentorship of Prof. Nicholas J. Long and Prof. Tim Albrecht (now at the University of Birmingham). In 2015 he joined Prof. Latha Venkataraman’s group at Columbia University as a Marie Skłodowska-Curie Fellow. Mike returned to Europe in 2017 for the final year of his fellowship, where he worked with Prof. Philippe Hapiot at the University of Rennes 1. Research in the Inkpen Lab at USC focuses on the design and study of single-molecule devices and self-assembled monolayers, applying electrochemical and scanning probe microscope-based methods to address fundamental questions in energy storage, catalysis, and electron transfer/transport.

 

 

 

Haixing Li

Assistant Professor

City University of Hong Kong

 

Haixing Li is currently an Assistant Professor in the Department of Physics at City University of Hong Kong. She obtained her B.S. in Physics from the University of Science and Technology of China in 2012 where she did her undergraduate thesis with Prof. Xianhui Chen growing oxides in search of superconductors. During her undergraduate studies, she also spent a summer at the University of Oxford learning quantum optics. She then moved to Columbia University and earned her Ph.D. in Applied Physics in 2017 under the guidance of Prof. Latha Venkataraman uncovering electronic properties of molecular silicon. She worked as a postdoctoral fellow and later a Charles H. Revson Senior Fellow in the laboratory of Prof. Ruben L. Gonzalez Jr. at Columbia University studying mechanisms of ribosomal frameshifting from 2017 to 2021. Her research group at City University of Hong Kong examine molecules and bio-inspired architectures at the single molecule level to spark advances in electronics, health, and sustainability.

 

Open for Submissions until 13th October 2022

 

Submissions to the journal should contain chemistry in a materials context and should fit within the scope of Journal of Materials Chemistry C. Please see the journal’s website for more information on the journal’s scope, standards, article types and author guidelines.

Appropriate topics include, but are not limited to:

  • Synthetic routes to molecular electronic components.
  • Single-molecule conductance experiments.
  • Large-area molecular electronic device characterization.
  • First principles calculations of molecular charge transport.
  • Integrating molecules into functional circuits.
  • Metal surface functionalization chemistry.
  • On-surface synthesis and electronics of molecular wires.
  • Intramolecular charge transfer and mixed valence chemistry.

If you would like to contribute to this themed collection, please submit your article directly through the Journal of Materials Chemistry C submission service. Please mention that your submission is a contribution to the ‘Molecular scale electronics ‘collection in the “Themed issues” section of the submission form and add a “Note to the Editor” that this is from the Open Call.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Open call for papers for Journal of Materials Chemistry A themed collection ‘Advancing materials through high-throughput experiments and computation’

Submit your work to this new themed collection, guest edited by Moran Balaish, Helge Soren Stein, Arghya Bhowmik and John Gregoire

Journal of Materials Chemistry A, published by the Royal Society of Chemistry, is pleased to announce an open call for papers for our up-and-coming themed collection on

Advancing energy-materials through high-throughput experiments and computation.

 

Banner with photos of Guest editors: Dr. Moran Balaish, Prof. Helge Sören Stein, Prof. Arghya Bhowmik, Prof. John Gregoire Background: Journal of Materials Chemistry A background image (Earth with 3D modelled molecules linking around the globe)

 

The unprecedented need for new and improved energy conversion and storage materials creates an historic imperative to accelerate the research process and proliferate new and improved materials (and interfaces) from guided and serendipitous discovery to commercial application by 5x – 20x. Integrating high-throughput automated ceramic synthesis, data management, data mining, autonomous materials characterization, and robust data analysis with guidance and uncertainty quantification from artificial intelligence (AI) and machine-learning (ML) can revolutionize how research is conducted. This accelerated way of orchestrating chemistry sparks new avenues in interdisciplinary research across chemistry, physics, material science, computer science, engineering and stimulates breakthroughs in energy materials.

Guest Edited by Dr. Moran Balaish (Technical University of Munich, Germany), Prof. Helge Sören Stein (Karlsruhe Institute of Technology, Germany), Prof. Arghya Bhowmik, and Prof. John Gregoire, this themed collection of Journal of Materials Chemistry A aims to provide a platform for recent developments in the emerging research area of material science and technology accelerated by artificial intelligence, autonomous, and automated methods for discovering, characterizing, understanding and upscaling energy materials and related applications. This themed collection will focus on the 4 major phases of inorganic material’s development cycle for energy materials relating broadly to the field of energy conversion and storage. We welcome contributions relating to orchestrating experiments, integrating simulations and experiment, uncertainty quantification in theory and experiment, going beyond facile property prediction, transfer learning, explainable machine learning models in chemistry, technical papers on new innovative methods for coating and synthesis, advanced automatic data analysis, and data management are welcome.

This call for papers is open for the following article types:

  • Communications
  • Full papers

Submission Deadline: 13th October 2023

Submissions to the journal should fit within the scope of Journal of Materials Chemistry A. Please see the journal website for more information on the journal’s scope, standards, article types and author guidelines.

If you would like to contribute to this themed collection, you can submit your article directly through the journal’s online submission service at https://mc.manuscriptcentral.com/jmchema. Please add a “note to the editor” in the submission form when uploading your files to say that this is a contribution to the themed collection. The Editorial Office reserves the right to check suitability of submissions in relation to the scope of the collection, and inclusion of accepted articles in the final themed collection is not guaranteed.

If you have any questions about the collection, contact the Editorial Office at materialsa-rsc@rsc.org. We look forward to receiving your submissions and featuring your latest work in this exciting collection!

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)