A perspective on contact-electro-catalysis based on frontier molecular orbitals
Materials Advances publishes research articles on topics across materials science, which are open access and free to read. We asked the authors of a recent article on mechanical-induced catalysis to discuss their work in more detail.
In this post, we share insights from our interview with Ziming Wang and learn more about the authors of recently published paper ‘A perspective on contact-electro-catalysis based on frontier molecular orbitals‘.
Insights from the authors
What aspect of your research are you most excited about at the moment?
“Contact-electrification (CE) is a ubiquitous effect, and its first documentation can be traced back to over 2600 years ago. Recent studies have proved the electron is the dominant charge carrier by employing the thermionic emission or photoelectric effect to distinguish electrons. In virtue of the CE-driven electron transfer process, our group proposed the concept of contact-electro-catalysis (CEC) in 2022. However, a series of experimental observations during CEC could not be well-explained by existing theories of CE. In our recent Materials Advances article, we have proposed a more systematic framework to bridge the concepts of CE and CEC. To be specific, by taking the energy state of electrons into consideration, this framework could not only explain the difference in transferred charges when different polymers are employed, but also specify the transfer path of electrons and corresponding energy requirement. We expect this study could lead to the establishment of a contact-electro-catalytic diagram for facilitating the selection of suitable materials and mechanical stimulations for catalyzing target reactions.”
What do you find most challenging about your research?
“Although the contact-electrification (CE) effect is very common between two contact surfaces, its underlying mechanism remains controversial due to the lack of intuitive and precise characterization methods. Moreover, existing investigations mainly focus on the density of transferred charges during CE. However, the energy state of transferred electrons is also a vital parameter, especially for evaluating the feasibility of promoting target reactions. Thus, it is very challenging to establish a systematic framework that could take both the density and energy state of electrons into consideration.”
How do you feel about Materials Advances as a place to publish research on this topic?
“I believe that Materials Advances is an ideal platform for publishing research on this topic. This high-profile journal is well-regarded in the materials science community and offers a broad readership that spans various disciplines. Its focus on interdisciplinary studies aligns well with the diverse nature of materials research, making it an ideal platform for sharing findings that can impact various applications.”
What is one piece of career-related advice or wisdom that you would like to share with early career scientists?
“One advice I would share with other early career scientists is to never stop learning and seeking new opportunities in your field. Science is constantly evolving, so it’s important to stay curious, open-minded, and adaptable. By continuously expanding your knowledge and skillset, you will be better equipped to navigate the challenges and opportunities that come your way in your career as a scientist.”
Meet the authors
Ziming Wang is currently a postdoctoral research fellow at the Beijing Institute of Nanoenergy and Nanosystems, Chinese Academic of Sciences. He received his Ph.D. degree in condensed matter physics from the University of Chinese Academy of Sciences (UCAS), under the supervision of Prof. Zhong Lin Wang. His research interests include contact-electro-catalysis, self-powered sensors, and energy harvesting. |
Xuanli Dong received his bachelor’s degree from Beijing Information Science & Technology University in 2020. He is currently pursuing his PhD degree in Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences. His research focuses on contact electrification at the liquid-solid interface and contact-electro-catalysis. |
Fu-Jie Lv received his bachelor’s degree from Shandong University Of Technology in 2023. He is currently pursuing his master’s degree in Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences. His research focuses on contact-electrification at the liquid-solid interface and contact-electro-catalysis. |
Wei Tang received his B.S. degree from the Physical Department and Ph.D. degree from the Microelectronic Department from Peking University in 2008 and 2013. He is a professor at the Beijing Institute of Nanoenergy and Nanosystems, Chinese Academic of Sciences. His research interests include interface electron transfer and its applications in wearable electronics, contact-electro-catalysis, and energy harvesting devices. |
We congratulate the authors on their impactful work in this emerging field and wish them success in their future academic research!