Archive for the ‘Board News’ Category

Journal of Materials Chemistry B and Materials Advances welcome Professor Yoshiko Miura to the Editorial Boards

Journal of Materials Chemistry B and Materials Advances are delighted to welcome Professor Yoshiko Miura from Kyushu University in Japan to the Editorial Boards as a new Associate Editor.

 

 

Yoshiko Miura is currently a Professor in Chemical Engineering and Polymer Chemistry at Kyushu University, Japan. She studied polymer chemistry and biopolymer chemistry at Kyoto University under the supervision of Prof. Yukio Imanishi and Prof. Shiro Kobayashi, and received her PhD in 2000.  From 2000 to 2001, she spent her postdoctoral period at the University of Pennsylvania in Professor Virgil Percec’s group.  In 2001, she then returned to Japan and was appointed as an Assistant Professor in the Department of Biotechnology at Nagoya University. Then in 2005, she was appointed as an Associate Professor at the School of Materials Science in the Japan Advanced Institute of Technology.  From 2010 to the present, she is a Professor at Kyushu University. Her current research interests include the development of bio-based polymers of glycopolymers, biofunctional nanogels, porous polymers, and biomimetic materials.

 

Check out some of Yoshiko Miura’s recent publications in RSC journals:

 

A QCM study of strong carbohydrate–carbohydrate interactions of glycopolymers carrying mannosides on substrates
Takahiro Oh, Takeshi Uemura, Masanori Nagao, Yu Hoshino and Yoshiko Miura
J. Mater. Chem. B, 2022, 10, 2597-2601, DOI: 10.1039/D1TB02344F

Controlled polymerization for the development of bioconjugate polymers and materials
Yoshiko Miura
J. Mater. Chem. B, 2020, 8, 2010-2019, DOI: 10.1039/C9TB02418B

Controlling the block sequence of multi-block oligomer ligands for neutralization of a target peptide
Hinata Takimoto, Sho Katakami, Yoshiko Miura and Yu Hoshino
Mater. Adv., 2020, 1, 604-608, DOI: 10.1039/D0MA00149J

Screening of a glycopolymer library for GM1 mimetics synthesized by the “carbohydrate module method”
Masanori Nagao,  Takeshi Uemura, Tasuku Horiuchi, Yu Hoshino and Yoshiko Miura
Chem. Commun., 2021, 57, 10871-10874, DOI: 10.1039/D1CC04394C

 

Read our interview below to find out more about Yoshiko:

 

1. What attracted you to pursue a career in materials science and how did you get to where you are now?

I chose a career in materials chemistry because of using chemistry to contribute to industry, human resource development, and biotechnology. Since polymer chemistry was my original major, I built my career by conducting functional materials research that incorporated cutting-edge polymer chemistry. I belonged not only to the Department of Chemistry but also to Biotechnology, Materials Science, and Chemical Engineering to learn not only the peripheral materials chemistry but also the peripheral research areas, which helped me in my career development.

 

2. Why did you choose to specialize in your specific research field?

 I specialized in polymeric materials because of the many contributions that can be made by materials chemistry, especially polymer functional materials. In particular, I am interested in glycopolymers because they make use of natural substances. Glycopolymers are attractive to me because they are a fusion of synthetic chemistry, polymer chemistry, and biotechnology, and are interesting materials.

 

3. What excites you most about your area of research and what has been the most exciting moment of your career so far?

 It is very exciting to see advances in materials chemistry as new research methods are invented that one might not have thought of. Also, in my own research, it is very exciting to see a molecule that I have designed function as it should.

 

4. What has been the most challenging moment of your career so far?

 After I became independent as a PI shortly, I could not get scientific research grants, which made it difficult for my own research to survive.

 

5. What is your favourite reaction or material, and why?

 That is RAFT living radical polymerization. It is a relatively easy chemical reaction to achieve, and at the same time, the reaction is highly versatile.

 

 6. Why do you feel that researchers should choose to publish their work in Journal of Materials Chemistry B and Materials Advances?

The two journals, Journal of Materials Chemistry B and Materials Advances, have a wide range of expertise editors in materials chemistry, which ensures that the journals are properly reviewed. The journals are properly managed, and their impact factors are stable.

 

7. What attracted you to join the Editorial Boards of Journal of Materials Chemistry B and Materials Advances?

 These two journals are among the top journals in materials chemistry and are journals to which I make my own submissions. It is an honour and at the same time a very rewarding job to be able to personally contribute to the management of a journal that is at the center of materials chemistry, with a focus on bio-applications.

 

 8. The JMC and Materials Advances teams are delighted to welcome you to the Editorial Board. What are you most looking forward to when acting as Associate Editor for the journals?

 As Associate Editor, I am most looking forward to learning about the latest developments in materials chemistry and to working on activities that will enhance the importance of materials chemistry.

 

9. Why should young people study chemistry or related subjects?

 Chemistry and materials are involved in environmental issues, health care, and all matters. By studying chemistry, students can develop the ability to understand and solve the various problems of today’s world based on chemistry.

 

10. What impact do you feel that your area of research can make over the next 10 years?

 Many biofunctional materials have been published and some research is superior to the current technologies. Practical application of some excellent studies will contribute to the development of basic science and medicine as a result of biotechnology.

 

Submit your best work to Yoshiko and our team of Associate Editors on Journal of Materials Chemistry B and Materials Advances now! Check out our author guidelines for information on our article types or find out more about the advantages of publishing in a Royal Society of Chemistry journal.

Keep up to date with our latest articles, reviews, collections & more by following us on Twitter, Facebook or by signing up to our E-Alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Journal of Materials Chemistry C and Materials Advances welcome Professor Hao-Li Zhang to our Editorial Boards

Journal of Materials Chemistry C and Materials Advances are delighted to welcome Professor Hao-Li Zhang from the University of Lanzhou to the Editorial Boards as a new Associate Editor.

 

 

Professor Hao-Li Zhang received his BSc and PhD from Lanzhou University in 1994 and 1999, respectively. After his postdoctoral work at University of Leeds in 1999 with Professor Stephen D. Evans, he worked at the University of Oxford in 2002 as a research associate with Professors Andrew Briggs and David Bucknall. In 2004, he joined the State Key Laboratory of Applied Organic Chemistry (SKLAOC) at Lanzhou University as a professor of chemistry. His research mainly focuses on the development of new organic functional materials for electronic and optoelectronic applications, including transistors, single-molecule devices and nonlinear optics. He was the recipient of several prizes and awards, including Asian Rising Stars by Asian Chemical Congress and Distinguished Young Scholar by NSFC. He is a Fellow of the Royal Society of Chemistry.

I am really delighted to have been appointed as a new Associate Editor of Journal of Materials Chemistry C and Materials Advances. Since my early career, I have witnessed the rapid development of materials chemistry as a highly interdisciplinary science that provides materials foundation to various new technologies. In my research, I am devoted to combine expertise in synthetic organic chemistry and physical chemistry to produce novel functional organic materials and to realize new applications in electronic, optical and nanoscale devices. I endeavor to work with the editorial team to promote creative and interdisciplinary researches in materials chemistry.’

 

Check out some of Hao-Li’s recent publications in RSC journals:

 

Solid additives in organic solar cells: progress and perspectives
Yi-Fan Ma, Yamin Zhang and Hao-Li Zhang
J. Mater. Chem. C, 2022, 10, 2364-2374, DOI: 10.1039/D1TC04224F

Nonvolatile organic field-effect transistor memory from pyrene-fused azaindacene regioisomers
Duan-Wu Liu, Yamin Zhang, Xiang-Yang Li, Qi Xiao, Wen-Jing Sun, Xiangfeng Shao and Hao-Li Zhang
J. Mater. Chem. C, 2021, 9, 6560-6567, DOI: 10.1039/D1TC00560J

Carbon nano-onion encapsulated cobalt nanoparticles for oxygen reduction and lithium-ion batteries
Ming-Jun Xiao, Ze-Qi Zhang, Qi Xiao, Xiang-Yang Li, Zheng-Tao Zhang,  Qiang Wang, Yong Peng and Hao-Li Zhang
J. Mater. Chem. A, 2021, 9, 7227-7237, DOI: 10.1039/D0TA12504K

Unveiling the dimension-dependence of femtosecond nonlinear optical properties of tellurium nanostructures
Qi Xiao, Bo Ma, Xian Fei, Duan-Wu Liu, Xin-Ping Zhai, Xiang-Yang Li, Ming-Jun Xiao, Yong Peng, Qiang Wang and  Hao-Li Zhang
Nanoscale Horiz., 2021, 6, 918-927, DOI: 10.1039/D1NH00253H

 

Read our interview with Hao-Li below:

 

1. What attracted you to pursue a career in materials science and how did you get to where you are now?

 

It is interesting to look back to see how my interest in physics and organic chemistry eventually led me to a career in materials science. I was very much fond of both physics and chemistry in high school, and have ever won several prizes in a few tournaments, which got me admitted by Lanzhou University without taking the national college entrance examination. I happily selected the Department of Chemistry to study organic chemistry, which is one of the best major in Lanzhou University. When I entered PhD period, my project was about fabrication of “intelligent interface” based on Self-assembled Monolayers. This project seemed to be a perfect venue to fulfil my desires in both organic chemistry and physics, where I synthesized various photochromic organic molecules, and then employed different physical measurement technologies to study their optical and electronic properties on surface. I soon realized that my knowledge in physics is insufficient to support advance research in such highly interdisciplinary field. I then went to Department of Physics and Astronomy at Leeds University for my first postdoc, and had a very enjoyable experience working along with a group of physicists led by Prof. Stephen D. Evans. Later, I joined the Department of Materials at Oxford University as a research associate, working with Prof. Andrew Briggs and Prof. David Bucknall. In Oxford, I collaborated with many excellent material scientists and I learned that materials science is a rapid developing, exciting and highly interdisciplinary science that provides materials foundation to various new technologies. In 2004, I moved back to China to start my independent career in the State Key Laboratory of Applied Organic Chemistry at Lanzhou University. My research group is trying to combine expertise in synthetic organic chemistry and physical chemistry to produce novel functional organic materials and to realize new applications in electronic, optical and nanoscale devices.

 

2. Why did you choose to specialize in your specific research field?

 

In my graduate study time, I was very much interested in organic synthesis. I felt that the creation of organic molecules with predesigned physical properties is like a work of art. In 2000, when I just finished my PhD, three researchers were awarded Nobel Prize in Chemistry for their research in conducting polymer, which draw my attention to the research in organic semiconductor. I found organic semiconductor is a very promising field to work on, as it offers great application potentials in a broad field. I also like the challenge of design organic molecules with desirable electronic or optical properties and then go to laboratory and synthesize them. It is fascinating that installing or removing a tiny functional group might dramatically change the electronic properties of an organic molecule, even converting an insulator into a good semiconductor. In my group, we have been able to create many series of new organic semiconductors for different applications, like transistors, solar cells and lasers. Though it is very challenging, I found the research in creating new and advanced organic semiconductor is very exciting and rewarding.  

 

3. What do you see as the biggest challenges facing researchers who work in your field?

 

There are many challenges in organic semiconductor research, but I think the biggest one is how to bridge the gap between molecules and materials. Now days, chemists can readily design various organic molecules and predict their properties, like absorption, emission and electronic affinity etc. However, these predictions are reliable only at molecular level. For optoelectronic devices, we need to know the properties of molecules in solid state, there are still a lack of suitable tools to deal with this problem. This is mainly because organic molecules are packed together using weak intermolecular interactions, and there are vast possibilities that these molecules may pack together in solid state, which is known as polymorphism. At the moment, we still cannot confidently predict the crystal structure from a molecular formula, so that it is difficult tell from a molecular structure that whether it can become a good material. I believe that with the rapid growing of organic semiconductor library, and the fast development of artificial intelligent (AI), AI-assisted material design or screening may offer a new and efficient way to overcome this challenge.    

 

4. What excites you most about your area of research and what has been the most exciting moment of your career so far?

 

As a material chemist specializing in organic synthesis, I am particularly excited each time when we made discovery on new organic framework that exhibiting good semiconducting properties. A few years ago, our group discovered a new family of n-type organic semiconductor based on pyrene diimide (PyDI) framework. We demonstrated that PyDI offer many attractive features, including excellent electron mobility, stability and two photon excited fluorescence. We have constructed a series of organic devices based on PyDI derivatives, ranging from OFET, OPV to memory devices, and achieved excellent device performance.  I can still recall the excitement when we made this molecule from a design on paper.  

 

5. Which of your JMC publications are you most proud of and why?

 

I am proud of every paper I published in JMC. I’d like to just pick two as examples. I am interested in the fundamental issues related to organic devices, and one of such issue is how to control the carrier transport properties in organic field effect transistors (OFETs). In our publication “Tuning the ambipolar charge transport properties of N-heteropentacenes by their frontier molecular orbital energy levels” (J. Mater. Chem. C, 2015, 3, 4188–4196), we revealed how to control the ratio of electron and hole mobilities in ambipolar OFETs. Besides, in our latest publication (J. Mater. Chem. C, 2022, 10, 8666–8673), we provides a strategy to precisely tune the crystalline structures between 1D lamellar and 2D crossed motifs, which helps to improve the hole mobility and device stability. These results provide useful guidelines to the design of organic semiconductors for stable and high performance OFETs.

 

6. Why do you feel that researchers should choose to publish their work in Journal of Materials Chemistry C and Materials Advances?

 

When I discuss with my students about which journal to publish our research, I always emphasize two most important factors: scope and recognition. The Journal of Materials Chemistry family has a history of more than thirty years for publishing high quality research work on materials chemistry. They are well recognized by the materials research community, and have attracted a broad range of readers from interdisciplinary communities. With the rapid growing of submission, the Journal of Materials Chemistry family has been divided into several sister journals, in which Journal of Materials Chemistry C mainly covers the materials for optical, magnetic and electronic devices, while Materials Advances publishes interdisciplinary researches through open access. Therefore, if one’s research meets the above scopes, and would like to share the results in one of the most recognized materials chemistry journals, I would definitely recommend Journal of Materials Chemistry C and Materials Advances.

 

7. What attracted you to join the Editorial Boards of Journal of Materials Chemistry C and Materials Advances?

 

I have been reading Journal of Materials Chemistry since I was studying chemistry in the university. I have long been a fan of this journal as it was one of the few early leading journals focusing on materials chemistry. I can still recall the excitement when my articles were highlighted by the editor or published as cover articles. With more publications on the JMC family journals and serving as advisory board member of other RSC journals, I started to have more interaction with the editorial team and found them professional and friendly. Therefore, I had no hesitation to accept the invitation to join the Editorial Boards of Journal of Materials Chemistry C and Materials Advances.

 

8. What career would you have chosen if you had not taken this career path?

 

I think a role in higher education management could be another career path I’d like to take. Besides Professor in Chemistry, I am also serving as the executive direction of Graduate School of our University. I enjoy teaching very much because it gives me chance to interact with many young, curious and talent students. I also realize that our graduate education system needs constant update and reform in response to the impact of the Knowledge Explosion and to meet the ever growing new requirements from the society.

 

9. Why should young people study chemistry or related subjects?

 

I could not emphasize too much about the importance of chemistry. As one of the oldest and most fundamental subject of science, Chemistry is often referred to as the central science because it joins together physics and mathematics, biology and material sciences. Studying chemistry provides an excellent basis for understanding the world we live in. Meanwhile, Chemistry provides nearly everything we need for our daily life, from food, clothing, and energy to materials. Therefore, I believe Chemistry knowledge is essential for young people who want a career in science, engineering or education.

 

10. What impact do you feel that your area of research can make over the next 10 years?

 

I believe that optoelectronic based on organic materials is at the very edge of booming. Commercialization of OLED alone has made novel devices, like large area, high brightness, low energy consumption and flexible display, into reality. Market research companies have forecasted that the share of organic optoelectronics will increase dramatically in the coming decade. It is reasonable to believe that other organic devices, for instance, organic photovoltaic and organic transistors will enter the commercialization tracks within the next 10 years. If all these forecasts come to true, we shall be a very fortunate generation to enjoy a wave of new organic optoelectronic devices coming to our daily life.

 

 

Submit your best work to Hao-Li and our team of Associate Editors on Journal of Materials Chemistry C and Materials Advances now! Check out our author guidelines for information on our article types or find out more about the advantages of publishing in a Royal Society of Chemistry journal.

Keep up to date with our latest articles, reviews, collections & more by following us on Twitter, Facebook or by signing up to our E-Alerts.

 

 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Journal of Materials Chemistry A and Materials Advances welcome Professor Dan Li to our Editorial Boards

Journal of Materials Chemistry A and Materials Advances are delighted to welcome Professor Dan Li from Jinan University in China to the Editorial Boards as a new Associate Editor.

 

 

Dan Li is currently a Professor and the Dean of College of Chemistry and Materials Science, Jinan University, and the Director of Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications. He received his BSc. from Sun Yat-Sen University in 1984 and then worked at Shantou University. He pursued his PhD at The University of Hong Kong with Professor Chi-Ming Che during 1988–1993. Then he returned to Shantou University and became Professor in 2001. He moved to Jinan University in Guangzhou in 2016.

His research interests focus on the design and fabrication of supramolecular coordination assemblies and their functions based on photoluminescence, porosity and chirality. He has co-authored more than 260 papers in peer-reviewed journals, including Nature, J. Am. Chem. Soc, Angew. Chem. Int. Ed. and Chem. Sci. He was a recipient of the National Science Fund for Distinguished Young Scholars of China in 2008, Fellow of The Royal Society of Chemistry (FRSC) in 2014, Ding Ying Science & Technology Award in 2019 and Guohua Outstanding Scholar of Jinan University in 2022.

 

Check out some of Dan Li’s publications in Royal Society of Chemistry journals:

Strong visible light-absorbing BODIPY-based Cu(i) cyclic trinuclear sensitizer for photocatalysis
Ri-Qin Xia, Ji Zheng, Rong-Jia Wei, Jiaxing He, Dong-Qin Ye, Ming-De Li, Guo-Hong Ning and Dan Li
Inorg. Chem. Front., 2022, Advance Article

Cr2O72− inside Zr/Hf-based metal–organic frameworks: highly sensitive and selective detection and crystallographic evidence 
Kun Wu, Ji Zheng, Yong-Liang Huang, Dong Luo, Yan Yan Li, Weigang Lu and Dan Li
J. Mater. Chem. C, 2020, 8, 16974-16983

Fine-tuning metal–organic framework performances by spatially-differentiated postsynthetic modification
Hai-Feng Zhang, Mian Li, Xue-Zhi Wang, Dong Luo, Yi-Fang Zhao, Xiao-Ping Zhou and Dan Li
J. Mater. Chem. A, 2018, 6, 4260-4265

 

Read our interview to find out more about Dan:

1. What attracted you to pursue a career in materials science and how did you get to where you are now?

Our society needs new materials. I have been studying Chemistry for many years. One of the most challenging tasks for Chemists is to create new molecules as candidates for materials application. I enjoy the discovery of new materials from understanding, designing and manipulating molecules. I am still somewhere in my career in materials science and I do not feel like I’ve “arrived”. Maybe the forever challenging is the forever driving force to where I get to now.

 

2. Why did you choose to specialize in your specific research field?

I began my research on the design and synthesis of photoluminescent metal complexes when I did my Ph. D. with Professor Chi-Ming Che at The University of Hong Kong, when Supramolecular Chemistry was growing tremendously. I was amazed by the beautiful infinite structures of aggregates of metal complexes and coordination polymers (CPs) or metal-organic frameworks (MOFs) which contain numerous types of chemical bonds and supramolecular interactions and possess diverse functions. As a synthetic chemist, I focus my research on the fabrication and preparation of new supramolecular coordination entities for developing new functional materials to solve energy and environmental related problems.

 

3. What excites you most about your area of research and what has been the most exciting moment of your career so far?

I am happy to see that the prominent growth of the research of MOF materials that has risen to the forefront of materials science, and a mass of researchers from different fields are involved to help drive the research forward. The most exciting moment of my career was when I receive my first paper published in Chem. Commun. when I was a PhD student.

 

4. What has been the most challenging moment of your career so far?

 The most difficult challenge was the lack of research facilities in my early career. I was lucky that I was supported by the President of Shantou University, when I worked there, to acquire an X-ray single crystal diffractometer.

 

 5. What is your favourite reaction or material, and why?

My favourite material is supramolecular coordination assemblies based on coinage-metal cyclic trinuclear units (CTUs). Each CTU is constructed by the coordination between linear two-coordinated metal ions and bridging pyrazolate ligands to form a near-planar nine-membered ring. Research of the CTU-based assemblies or cyclic trinuclear complexes (CTCs) has involved several fundamental areas, including noncovalent and metallophilic interaction, excimer/exciplex, acid−base chemistry, metalloaromaticity, supramolecular assemblies, and host/guest chemistry. These allow CTU-based assemblies to be embraced in structural complexity including supramolecular aggregates, coordination cages and coordination polymers/metal-organic frameworks, and functional diversity for a wide range of innovative potential applications that include chemical sensing, semiconducting, gas and liquid adsorption/separation, catalysis, full-colour display, solid-state lighting, and soft materials. My first publication in this field is the design and synthesis of a luminescent CTU-based MOF (Chem. Commun., 2006, 2845–2847). Based on our research in CTCs spanning near two decades, we recently published a perspective article in Chem. Commun. (2019, 7134–7146) and a review article in Chem. Rev. (2020, 9675−9742), providing a historic and comprehensive summary on CTCs from the perspectives of synthesis, structure, theoretical insight, and potential applications.

 

 6. Which of your JMC publications are you most proud of and why?

We discovered a dual-emitting Eu-MOF with 2,6-naphthalenedicarboxylic acid as ligand that exhibits a luminescence switching between red and blue triggered by pH over a short-range of 3 to 4. A single crystal to single-crystal (SC–SC) transformation process is involved with the displacement of the DMF coordinated by water molecules and the slight elongation of the Eu–O bond to the ligand, confirmed by single-crystal X-ray diffraction. With the specific pH-modulated luminescence switching property, the MOF could be used as an excellent sensor for the rapid detection of aspartic and glutamic acids amongst other amino acids. The work was published in JMCA (2019, 11127–11133).

 

7. Why do you feel that researchers should choose to publish their work in Journal of Materials Chemistry A and Materials Advances?

Journal of Materials Chemistry A and Materials Advances provide interdisciplinary platforms for researchers who work to design, create, and understand new forms of matter and their innovative applications. Both journals publish high quality and influential research in a very short publication period with average time to first decision of 29 days (for JMCA) and 22 days (for Materials Advances) respectively. Materials Advances is available to all through open access.

 

8. What attracted you to join the Editorial Boards of Journal of Materials Chemistry A and Materials Advances?

I have published many papers in RSC journals since I was a PhD. student. I also reviewed a great number of manuscripts invited by the Editors of RSC journals. Working as an Associate Editor of both journals, I can interact with researchers in the materials science community more directly and frequently.

 

9. The JMC and Materials Advances teams are delighted to welcome you to the Editorial Board. What are you most looking forward to when acting as Associate Editor for the journals?

Thank you. I am delighted to join the Editorial Board and look forward to working together with others Board members and Editorial staff.

 

10. What is your biggest passion outside of science?

I like running. The passion of running not only is a consistent reward for health, but also creates a more fulfilling existence for my research.

 

11. What career would you have chosen if you had not taken this career path?

When I was a boy, I dreamed of being a soldier. In middle school, I had an obsession with Mathematics and liked to be a Mathematician. Finally, I changed my mind to choose Chemistry as my major in the University, maybe due to the highest score of Chemistry in all subjects of the University Entrance Exam. Honestly, I loved Chemistry also. I am fortunate that I made the change.

 

12. Why should young people study chemistry or related subjects?

Chemistry is a discipline to understand nature and to create new matter. It becomes increasingly essential to the development of innovative materials and cutting-edge technologies. Studying chemistry can open wide-ranging and stimulating career options to develop solutions to society challenges and explore a world of possibilities.

 

Submit your best work to Dan Li and our team of Associate Editors on Journal of Materials Chemistry A and Materials Advances now! Check out our author guidelines for information on our article types or find out more about the advantages of publishing in a Royal Society of Chemistry journal.

Keep up to date with our latest articles, reviews, collections & more by following us on Twitter, Facebook or by signing up to our E-Alerts.

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Journal of Materials Chemistry C and Materials Advances welcome Professor Ana Flavia Nogueira and Professor Zhiguo Xia to our Editorial Boards

Professor Ana Flavia Nogueira, Associate Editor, University of Campinas, Brazil

 

Professor Ana Flavia Nogueira obtained her bachelor’s degree in Chemistry from the University of São Paulo (1996) and Master (1998) and PhD degrees in Chemistry from the University of Campinas (2001). She worked as a post-doctorate fellow at the Imperial College, UK, in 2001-2002 and as visiting researcher at Stanford University in 2017-2018. At the moment, she is Full Professor in the Chemistry Institute at UNICAMP and Director of the Center for Innovation on New Energies (CINE, www.cine.org.br). Professor Nogueira’s research focuses on the development of functional (nano)materials and their application in solar energy conversion. She has experience in the field of perovskite solar cells, perovskite quantum materials and dense energy carriers (generation of solar fuels through photoelectrocatalytic systems using water, CO2 and other low-added values substrates).

Read these publications by Professor Ana Flavia Nogueira in Royal Society of Chemistry journals:

Effect of the incorporation of poly(ethylene oxide) copolymer on the stability of perovskite solar cells

Jeann Carlos da Silva, Francineide Lopes de Araújo, Rodrigo Szostak, Paulo Ernesto Marchezi, Raphael Fernando Moral, Jilian Nei de Freitas and Ana Flávia Nogueira
J. Mater. Chem. C, 2020, 8, 9697-9706, DOI: 10.1039/D0TC02078H

Reduced graphene oxide in perovskite solar cells: the influence on film formation, photophysics, performance, and stability
Paulo Ernesto Marchezi, Francineide Lopes de Araújo, Rodrigo Szostack, José Carlos Germino, Eralci M. Therézio, Alexandre Marletta and Ana Flavia Nogueira
J. Mater. Chem. C, 2021, 9, 14648-14658, DOI: 10.1039/D1TC01360B

 

Professor Zhiguo Xia, Associate Editor, South China University of Technology, China

 

Professor Zhiguo Xia obtained his bachelor degree in 2002 and master degree in 2005 from Beijing Technology and Business University, and he received his PhD degree in chemistry from Tsinghua University in 2008. He worked at the China University of Geosciences, Beijing from 2008 to 2014 as an Assistant Professor and Associate Professor. He has been a full Professor at the University of Science and Technology Beijing since 2014. In 2018, he moved to South China University of Technology and worked as a full professor at The State Key Laboratory of Luminescent Materials and Devices. His research interest focuses on the structural design of inorganic luminescence materials including the rare earth phosphors and luminescent metal halides for emerging photonics applications, such as light-emitting diodes, scintillators and sensors.

Read these publications by Professor Zhiguo Xia in Royal Society of Chemistry journals:

Design optimization of CsPbBr3 nanocrystals into zeolite Beta composites as ultra-stable green emitters for backlight display applications
Bohan Li, Yuchi Zhang, Yan Xu and Zhiguo Xia
J. Mater. Chem. C, 2021, 9, 12118-12123, DOI: 10.1039/D1TC02757C

Recent progress of zero-dimensional luminescent metal halides
Mingze Li and Zhiguo Xia
Chem. Soc. Rev., 2021, 50, 2626-2662, DOI: 10.1039/D0CS00779J

We encourage you to submit your best work to Ana, Zhiguo and our team of Associate Editors now! Check out the Journal of Materials Chemistry C and Materials Advances author guidelines for more information on our article types.

Please join us in welcoming Professors Ana Flavia Nogueira and Zhiguo Xia to the Journal of Materials Chemistry C and Materials Advances Editorial Boards. 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Editor’s Choice Collection: Perovskite-based solar cells

We are delighted to announce a new Journal of Materials Chemistry A and Materials Advances Editor’s Choice Collection on perovskite-based solar cells from Prof. Zhiqun Lin.

Newly appointed Journal of Materials Chemistry A and Materials Advances Advisory Board member Zhiqun Lin (Georgia Institute of Technology, USA), who has recently come to the end of his time as an Associate Editor, has gathered together the journals’ most outstanding recent papers in perovskite-based photovoltaics for this Editor’s Choice collection.

In order to highlight developments in perovskite-based solar cells, this online collection includes recent manuscripts from Journal of Materials Chemistry A and Materials Advances on the topic.

Papers published in Materials Advances are gold open access and freely accessible. Those published in Journal of Materials Chemistry A are free to access until Friday 8 April 2022. You can read the full collection online here.

Congratulations to all authors featured and we hope you enjoy browsing this collection of articles selected by Zhiqun Lin. We are also pleased to highlight that Zhiqun Lin has recently been appointed to our sister journals, Nanoscale and Nanoscale Advances.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Remembering Susan Odom, Materials Advances Advisory Board Member

Dr Susan Odom, member of the Materials Advances Advisory Board, has sadly passed away

It is with great sadness that we have learnt that Dr Susan Odom, University of Kentucky, has passed away suddenly at her home.

Susan Odom received her B.S. in Chemistry from the University of Kentucky in 2003, followed by her PhD from Georgia Tech in 2008, with a stint as a visiting graduate scholar at Oxford University.  After a 3 year post-doctorate position at the University of Illinois, Susan joined the faculty at her alma mater, the University of Kentucky in 2011, later becoming an Assistant Professor in 2017. In 2018, Susan was part of the University of Kentucky faculty group teaching at Jilin University in China.

During her time as faculty at Kentucky, Susan won the “Teacher who made a difference” award in 2012, 2013, 2016 and 2017.  More recently, last year, Susan was awarded the American Chemical Society Women in Chemistry Rising Star Award.  She was also committed to mentoring and supporting women in STEM fields, co-founding a group to encourage girls to pursue their academic goals, and serving on the Kentucky ACE Women’s Network.

Susan’s research focused on the design, synthesis, and characterization of conjugated organic materials for applications that access multiple states of oxidation.  She was particularly interested in structure/property relationships of redox-active molecules for energy storage applications, such as lithium-ion batteries and redox-flow batteries.  Susan’s group was also making strides in the development of materials for the positive and negative sides of flow cell batteries.

Susan published over three dozen articles on her research, and held five awarded patents and 11 patent applications.

Dr Odom will be missed by the Journal of Materials Chemistry family and the global materials community, but in particular by her friends, colleagues and students at the University of Kentucky.

Interim Dean of the College of Arts and Sciences at UK, Christian Brady, has written a memorial for Susan

A message board has also been set up for people to share memories of Susan for the University of Kentucky and wider community

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to our Highly Cited materials chemistry community!

We are delighted to have many world-leading materials science researchers in our community, helping to guide Journal of Materials Chemistry A-C as high impact journals publishing properties and synthesis of exciting new materials.

Many have been recognized in Clarivate Analytics’ recently published 2017 Highly Cited Researchers list!

Congratulations from the Journal of Materials Chemistry team to…

…Editorial Board members

  • Journal of Materials Chemistry A
  • Journal of Materials Chemistry B
    • Xiaogang Qu, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China
  • Journal of Materials Chemistry C

…and Advisory Board members

  • Journal of Materials Chemistry A
    • Xinliang Feng, Dresden University of Technology, Germany
    • Jiaxing Huang, Northwestern University, USA
    • Linda Nazar, University of Waterloo, Canada
  • Journal of Materials Chemistry B
    • Chunhai Fan, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, China
    • Luis Liz-Marzán, CIC biomaGUNE, Spain
  • Journal of Materials Chemistry C
    • Manish Chhowalla, Rutgers – The State University of New Jersey, USA
    • Mercouri Kanatzidis, Northwestern University, USA
    • Junji Kido, Yamagata University, Japan
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Martyn McLachlan: JMC C’s newest Associate Editor

Journal of Materials Chemistry C would like to give a warm welcome to our newest Associate Editor, Dr Martyn McLachlan, who joined us at the start of April. Dr McLachlan is a Reader (Associate Professor) and Director of Undergraduate Studies in the Department of Materials, Imperial College London. Previously he held a Royal Academy of Engineering/EPRSC Research Fellowship (2007-2012) at the same institute. He received his Ph.D. from the University of Glasgow in the Department of Chemistry. 

His research interests focus on the development of solution processed interlayer and electrode materials for photovoltaic and light emitting devices. Of particular interest to him are the correlation of processing-structure-performance relationships of solution processed organic, inorganic and hybrid devices and the characterisation of their surfaces and buried interfaces. His research is aimed at the integration of the materials and techniques developed into large volume manufacturing of plastic electronics. He has published more than 63 peer-reviewed articles and has been invited to give numerous lectures at international conferences.

Further information about Martyn McLachlan can be found on his webpage.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Christopher Bettinger wins the 2016 Journal of Materials Chemistry Lectureship

We are delighted to announce that Professor Christopher Bettinger has been selected as the seventh winner of the Journal of Materials Chemistry Lectureship in recognition of the important contributions he has made to the materials chemistry field.

Professor Bettinger is aiming to present the lectureship at the 2017 Spring MRS in Phoenix Arizona, April 2017, during Symposium SM1 – Bioelectronics – Materials, Processes and Applications where he is both the meeting chair and an invited speaker.

Professor Bettinger received a S.B. in Chemical Engineering, a M.Eng. in Biomedical Engineering, and a Ph.D. in Materials Science and Engineering as a Charles Stark Draper Fellow, all from the Massachusetts Institute of Technology.  He completed his post-doctoral fellowship at Stanford University in the Department of Chemical Engineering as an NIH Ruth Kirschstein Fellow.

Christopher Bettinger is currently an Associate Professor at Carnegie Mellon University in the Departments of Materials Science and Engineering and Biomedical Engineering. He directs the laboratory for Biomaterials-based Microsystems and Electronics at CMU, which is broadly interested in the design of novel materials and interfaces that integrate medical devices with the human body.

Recent efforts focus on flexible electronics for neural interfaces edible electronics for ingestible diagnostics and therapeutics. Christopher is also the Co-Founder and CTO of Ancure, an early stage medical device company.


Christopher has also recently Guest Edited a joint themed issue between Journal of Materials Chemistry B and C on Organic Bioelectronics and contributed to the Journal of Materials Chemistry B 2016 Emerging Investigators themed issue.

In vitro electrochemical characterization of polydopamine melanin as a tissue stimulating electrode material
Ik Soo Kwon, Young Jo Kim, Luke Klosterman, Mats Forssell, Gary K. Fedder and Christopher J. Bettinger
J. Mater. Chem. B, 2016, 4, 3031-3036

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Li-Zhu Wu: JMC A’s newest Associate Editor

Journal of Materials Chemistry A would like to give a warm welcome to our newest Associate Editor, Li-Zhu Wu who joined us last month. Li-Zhu is currently based at the Technical Insitute of Physics and Chemistry in China. She received her Ph.D. from the Institute of Photographic Chemistry, the Chinese Academy of Sciences, under the supervision of Professor Chen-Ho Tung in 1995. From 1995−1998, she worked at the Institute of Photographic Chemistry as an associate professor. After a postdoctoral stay (1997−1998) at the University of Hong Kong working with Professor Chi-Ming Che, she returned to the Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, as a full professor.

Her research interests focus on photochemical conversion, including artificial photosynthesis, visible light catalysis for organic transformation, photoinduced electron transfer, energy transfer and chemical reactions in supramolecular systems. She has published more than 240 peer-reviewed articles, 2 books and 10 book chapters and holds 50 patents. She has been invited to give numerous lectures at international conferences, piquing interest worldwide.

Further information about Liz-Zhu can be found on her institution webpage.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)