Find out more about the winning paper in this infographic
Metal-free polypeptide redox flow batteries
Zhiming Liang, Tan P. Nguyen, N. Harsha Attanayake, Alexandra D. Easley, Jodie L. Lutkenhaus, Karen L. Wooley and Susan A. Odom
Metal-free polypeptide redox flow batteries
Zhiming Liang, Tan P. Nguyen, N. Harsha Attanayake, Alexandra D. Easley, Jodie L. Lutkenhaus, Karen L. Wooley and Susan A. Odom
Responses provided by Juliane Hefel, PPG general manager of specialty coatings & materials and Janice Mahon, Universal Display Corporation (UDC), senior vice president of technology commercialization and general manager, Commercial Sales Business.
What relevance does this industry have to the readers of Materials Advances?
Both: Complex small molecule organic and organometallic materials manufacturing holds immense relevance for researchers, particularly concerning the advances organic chemistry has made in the electronics industry and its potential to transform our daily lives.
Through the years, organic molecules have evolved to play an increasingly crucial role in enabling miniaturization and enhancing connectivity of electronics, such as OLEDs, organic photovoltaic cells (OPVs), and organic field-effect transistors (OFETs), and other industries that rely on material science.
OLEDs and other small organic molecule-based devices can be lightweight and flexible, enabling ultra-thin, bendable, and lightweight electronic products, including wearable devices, flexible displays, and electronic textiles.
One of the most significant advantages of small molecule organic materials in electronics is its sustainability as they can be developed to be incredibly energy efficient, potentially reducing the reliance on fossil fuels and minimizing environmental impact.
The interdisciplinary nature of materials science opens up exciting opportunities. From the lab to the plant, researchers and scientists working in the OLED industry, and manufacturing sector in general, collaborate in the design of disruptive advancements that create next-generation materials. With the potential to reshape the future of electronics and contribute to a more sustainable world, organic molecule manufacturing in general presents an exciting and impactful avenue in the field of chemistry and a doorway to diverse and high-tech career paths
What are your roles at PPG and UDC, respectively?
Juliane: I’m the general manager of PPG’s Specialty Coatings and Materials business. In my role, I deliver strategic and operational leadership to the business which creates solutions that enhance the surfaces and materials critical in our daily lives. Our products help secure the personal information in passports and ID cards to combat fraud, make our car tires safer and more fuel-efficient, and provide monomers, coatings and photochromic dyes in eyeglass lenses that improve and enhance your vision. We also produce energy-efficient organic light-emitting diode (OLED) materials to create the vibrant images you see on your TV, smartphone and other consumer electronics through our partnership with Universal Display Corporation (UDC). Together, we married UDC’s innovative technologies and materials with PPG’s expertise with ultra-high-purity organic material manufacturing, leading to breakthroughs in the high-efficiency phosphorescent OLEDs that fuel the display industry.
Janice: I’m the senior vice president of Technology Commercialization and general manager of Commercial Sales Business at Universal Display Corporation. I lead the transition of our high-performing, energy-efficient phosphorescent OLED (PHOLED) materials from our R&D labs in Ewing, New Jersey to the worldwide commercial market. I’m responsible for the manufacture, quality assurance and delivery of UDC’s PHOLED materials to the world’s leading display and lighting panel makers. It has been more than 20 years since I helped form the successful partnership between UDC and PPG. Through these two-plus decades, PPG and UDC have established robust systems that drive efficiency, reliability, and customer satisfaction. This unwavering commitment to assured supply and quality are critical to our strong leadership position in the OLED ecosystem.
What aspect of your work are you most excited about now and what do you find most challenging?
Both: Keeping up with the speed of electronic evolution presents an exciting opportunity as we look to the future. As consumer electronics technology and requirements evolve, so must our production of OLED emitters. The development of new and next-generation devices moves fast, and it takes agility and ingenuity to keep pace.
The equipment used to produce and test the products, combined with PPG and UDC’s 20-plus years of know-how, allows both companies to offer next-generation products smartly and respond to customer requests rapidly. Through this collaboration and as we experience the quick pace of product evolution in consumer electronics, PPG and UDC look forward to product launches that deliver increasingly sustainable manufacturing practices.
We’re also excited about the real power savings advantages that phosphorescent OLED technology offers. When used in smartphones, PHOLED materials are estimated to save more than 860,000 metric tons of carbon dioxide equivalent each year. Based on EPA’s calculator, this is comparable to the carbon sequestered by more than 14 million tree seedlings grown for ten years.
In May, PPG and UDC officially opened a new state-of-the-art OLED manufacturing facility in Shannon, Ireland. The site is expected to double the production capacity and diversify the worldwide manufacturing footprint for UDC’s energy-efficient phosphorescent OLED emissive materials to support the rapidly growing consumer electronics and display marketplaces.
Increasing global capacity through retrofitting an existing manufacturing plant in Shannon, we were able to pivot quickly to meet increasing customer needs now and into the future.
How are the materials specifications evolving in consumer electronics?
Both: UDC’s phosphorescent OLED molecules are designed to convert electricity to photons of light efficiently. Like with semiconductors, there is a requirement for extreme purity to ensure optimal function of the compound in an OLED device.
Agility is another must, as consumer electronic specifications continue to evolve. We must adopt the latest technology to make materials and monitor quality. Our focus on increasing sustainability of our manufacturing processes along with changing policies and restrictions also require innovative approaches. Flexibility is necessary to meet the exacting requirements as they continue to shift.
What do you see as the next big challenge to overcome in the area? (both from the consumer electronics and high-purity large scale manufacturing)
Juliane: We work with our customers and suppliers to solve problems with each new material and collaborate with partners as a key to success. From a manufacturing standpoint, we continuously evaluate how best to stay ahead of quickly changing customer requirements and needs.
With UDC, we’re actively delivering leading-edge phosphorescent PHOLED materials with leading-edge quality. Like pharmaceuticals, manufacturing phosphorescent emitters for OLEDs is a complex process to get to the precise purity level needed for materials that ultimately convert electricity into light.
Identifying and creating an environment to effectively manufacture this material requires extensive technical manufacturing know-how and will face continual evolution.
Janice: The evolution of consumer electronics continues at a rapid pace, driven by ongoing technological breakthroughs and changing consumer expectations. Our team of scientists, engineers and technicians are continuously discovering, developing and delivering next-generation phosphorescent OLED materials to meet the ever-changing and ever-evolving specifications for energy efficiency, operational lifetime and color gamut. Quickly scaling these materials from lab to high volume commercial market quantities and quality can be challenging, however, PPG and UDC’s long-standing commitment to excellence, cost-effectiveness and delivery reinforces our position as a trusted partner to the OLED industry.
Can you share one piece of career-related advice for early career scientists?
Juliane: Be transparent and hold yourself and others accountable for making progress and reaching goals. This builds trust in you as individual, as team player and your capabilities. I can’t emphasize enough the value of teamwork in accountability. Collective decision-making and goal agreement allows for bolder choices and calculated risk-taking.
I also always encourage a mindset that embraces change. Tap into others who also welcome change to create a multiplier effect. This type of engagement is key to developing the future. When we understand and anticipate the needs of partners and customers, we can accelerate change and becoming future-ready solution creators. With the integration of advanced technology like AI becoming increasingly important in the world, scientists should be ready for changing challenges.
Janice: Prioritize integrity in your actions and decisions, as it fosters strong relationships, inspires trust, and establishes a reputation of consistent and dependable character that will benefit your career in the long run. UDC’s core value of integrity has created a corporate culture that thrives, takes risks, and innovates. It has also been critical in establishing and solidifying our long-standing partnerships and reinforcing our position as a pioneering leader in the OLED ecosystem. In both personal and professional settings, integrity and trust are crucial for establishing credibility, cultivating healthy relationships, and achieving shared goals.
A new themed collection in Materials Advances will focus on the theory, the manufacturing, the characterization, and the applications of stimuli-responsive polymers, with particular emphasis on their remote actuation.
Actuators play a crucial and indispensable role in shaping the landscape of modern technology. These remarkable devices are the driving force behind the controlled motion and enable a wide array of applications across various industries. Customized functionality and optimized performance, leading to versatile and adaptable actuation systems, can be achieved through the capability of designing and tailoring properties in polymer actuators. To reach this goal, a reliable, thermodynamically-consistent and computationally affordable multiphysics modeling plays a crucial role. Following a thermodynamically-consistent approach is essential to properly couple mechanics with other realms of physics, such as actuation and sensing can be studied within the same theoretical framework. Additionally, the development of computationally affordable modeling techniques enables efficient and practical analysis along with the exploration of a wide range of actuator designs and operating conditions. The integration of these two modeling features not only promotes optimized analysis and design but also enhances the fundamental understanding of stimuli-responsive. Ad hoc experimental characterization facilitating the identification of the model parameters constitutes a key aspect of this process.; this should possibly leverage on the duality between actuation and sensing.
The integration of 0D, 1D, and 2D nanomaterials in polymer composites revolutionizes the multimodal actuation and control and offers unprecedented miniaturization and enhanced functionality. Moreover, development of Hybrid nanocomposites further expands the possibilities by combining different materials, resulting in synergistic effects and improved actuation performance. In recent times, actuators based on biodegradable and natural polymers are gaining significant importance. These materials not only offer sustainable alternatives but also exhibit impressive actuation properties. This enables actuators to cater to a wide range of application-specific requirements, from soft robotics to adaptive structures. These actuators are revolutionizing robotics, healthcare, automation, and many other domains. Their unique capabilities, such as precise motion control and adaptive response, enable the development of innovative solutions and pave the way for new technological advancements.
The goal of this themed collection will be to bring together contributions concerned with the most recent advances in the multimodal actuation and sensing of polymers. Topics include, but are not limited to:
We look forward to seeing your latest work in this field!
Lorenzo Bardella, University of Brescia, Italy
Mohammad Luqman, Taibah University, Saudi Arabia
Vinay Deep Punetha, P P Savani University, India
Materials Advances is celebrating its third birthday this year! As the journal continues to grow and finds its place within the materials research community, we would like to thank all our authors, reviewers, editors, and readers for their support.
Some exciting initiatives that you can get involved with include:
Keep up to date with the latest journal news! Sign up to our newsletter and content alerts or follow us on Twitter.
We are delighted to announce that Materials Advances will run an annual Paper Prize to celebrate the most significant articles published in the journal in the previous calendar year.
This year we recognise 3 outstanding papers that were published in 2022. The authors of each paper will receive a free infographic (normally worth between £350 – £750), a signed certificate, and promotion of their work through the journal networks.
Find the winner and runner-up papers below, and keep an eye out for more information soon!
Facet-dependent carrier dynamics of cuprous oxide regulating the photocatalytic hydrogen generation
Cui Ying Toe, Marlene Lamers, Thomas Dittrich, Hassan A. Tahini, Sean C. Smith, Jason Scott, Rose Amal, Roel van de Krol, Fatwa F. Abdi and Yun Hau Ng
Metal-free polypeptide redox flow batteries
Zhiming Liang, Tan P. Nguyen, N. Harsha Attanayake, Alexandra D. Easley, Jodie L. Lutkenhaus, Karen L. Wooley and Susan A. Odom
White light emission generated by two stacking patterns of a single organic molecular crystal
Yuma Nakagawa, Kuon Kinoshita, Megumi Kasuno, Ryo Nishimura, Masakazu Morimoto, Satoshi Yokojima, Makoto Hatakeyama, Yuki Sakamoto, Shinichiro Nakamura and Kingo Uchida
If you want to be in with a chance of winning the Materials Advances Paper Prize in a future year then submit your next high quality materials science research to the journal here.
This special collection across Materials Advances, Journal of Materials Chemistry A and Journal of Materials Chemistry C is in memoriam of Prof. Susan A. Odom, who sadly passed away on April 18, 2021.
Susan’s fundamental understanding of electro-chemical devices, coupled with her deep appreciation for materials chemistry, allowed her to push new boundaries. Amongst these were the development of new redox flow batteries, the design of lithium-ion batteries with redox active organic molecules, and the advancement of novel materials screening methods.
This special collection covers the topics that have been at the core of the scientific activity of Susan. As a chemist, she had a tremendous impact on the broad fields of organic electronics and electrochemical energy storage contributing research on the development of stable electro-active materials, the design of new electrodes and electrolytes for electro-chemical devices, the establishment of understanding of electron transfer reactions and, generally, the synthesis of new conjugated organic materials.
Guest edited by Veronica Augustyn, Kelsey B. Hatzell, Malika Jeffries-El, Jodie Lutkenhaus, and Natalie Stingelin.
All of the articles in the collection are free to access until 30th November, 2022. Articles in Materials Advances will always be free to access. A small selection of articles from the issue is provided below.
Introduction to the special collection in memoriam of Susan A. Odom (16 November 1980–18 April 2021)
Veronica Augustyn, Kelsey B. Hatzell, Malika Jeffries-EL, Jodie L. Lutkenhaus and Natalie Stingelin
Mater. Adv., 2022, Advance Article DOI: 10.1039/D2MA90085H
On the challenges of materials and electrochemical characterization of concentrated electrolytes for redox flow batteries
Alexis M. Fenton, Jr, Rahul Kant Jha, Bertrand J. Neyhouse, Aman Preet Kaur, Daniel A. Dailey, Susan A. Odom and Fikile R. Brushett
J. Mater. Chem. A, 2022, 10, 17988-17999 DOI: 10.1039/D2TA00690A
Functionalized anthrathienothiophenes: synthesis, properties, and integration into OFETs
Garrett Fregoso, Gehan S. Rupasinghe, Maryam Shahi, Karl Thorley, Sean Parkin, Alexandra F. Paterson and John Anthony
J. Mater. Chem. C, 2022, Advance Article DOI: 10.1039/D2TC02977D
We are delighted to share with you a new collection of articles highlighting some of the most popular recent articles published in Materials Advances on the characterisation of materials. Containing both reviews and original research, the collection includes work on new characterisation methods as well as applications to a variety of systems from MOFs to nanomaterials.
Below is a snapshot of some of the papers in the collection. We hope you enjoy reading these gold open access articles, which are all free to access.
Review
The emergence of mass spectrometry for characterizing nanomaterials: atomically precise nanoclusters and beyond
Clothilde Comby-Zerbino, Xavier Dagany, Fabien Chirot, Philippe Dugourd and Rodolphe Antoine
Mater. Adv., 2021, 2, 4896-4913
DOI: 10.1039/D1MA00261A
Communication
The surface-enhanced resonance Raman scattering of dye molecules adsorbed on two-dimensional titanium carbide Ti3C2Tx (MXene) film
Satheeshkumar Elumalai, John R. Lombardi and Masahiro Yoshimura
Mater. Adv., 2020, 1, 146-152
DOI: 10.1039/D0MA00091D
Paper
Effect of conductivity, viscosity, and density of water-in-salt electrolytes on the electrochemical behavior of supercapacitors: molecular dynamics simulations and in situ characterization studies
Débora A. C. da Silva, Manuel J. Pinzón C., Andresa Messias, Eudes E. Fileti, Aline Pascon, Débora V. Franco, Leonardo Morais Da Silva and Hudson G. Zanin
Mater. Adv., 2022, 3, 611-623
DOI: 10.1039/D1MA00890K
Sign up now to keep up to date on Twitter, Facebook, and our e-alerts.
We are delighted to announce a new themed collection on bioinspired artificial synapses and neurons based on memristors, to be published in Materials Advances, a gold open access journal from the Royal Society of Chemistry.
Guest Edited by Niloufar Raeis-Hosseini, Ruomeng Huang, and Sujaya Kumar Vishwanath.
Brain-inspired artificial synapses compute beyond the bottlenecks of von Neumann architectures by adapting highly sustainable information processing. Fabrication of artificial synapses in a physical device with the functionality of the biological neural network is an attractive research area. Complementary metal oxide semiconductor (CMOS) analog circuits emulate the synaptic performance of hardware-based neural networks. Since the hardware implementation of neuromorphic computation systems based on CMOS consumes much more energy than a natural system, numerous devices have been studied to realize an effective neuromorphic computing system. Among the proposed devices, memristors have emerged as the most efficient candidates to emulate biological synapses with high learning speed.
Memristors are two-terminal nanoelectronic devices with low power consumption, sustainable scaling, cost-effectiveness, and superior computing efficacy. They process information and compromise various fundamental operations that surpass typically integrated circuit technology. The temporal switching recommends that memristors are capable of acting as a physical system that imitates the synaptic memory function more precisely than the CMOS system.
This themed collection aims to highlight the recent developments, opportunities, and challenges in memristors and their applications in neuromorphic devices. We will outline the recent advances in neuromorphic nanodevices based on memristors by focusing on their fabrication and characterization methods. We will emphasize emerging bioinspired memristive devices and their improved performance by device structure and applied pulses engineering. We will also present outlooks of nanoelectronic devices and nanomaterials such as 2D materials, hybrid perovskites, and natural polymers.
We welcome contributions on memristors and artificial synapses in the form of research articles, communications, and reviews in the following categories.
Novel nanomanufacturing and processing methods of memristors:
Novel Memristive Materials:
Emerging memristive devices and architectures:
Memristive devices enabled neuromorphic computing applications:
Keywords: memristor, nanoelectronics, neuromorphic computing, artificial synapse, brain-inspired nanodevice
All submitted papers will go through the standard peer review process of Materials Advances and should meet the journal’s standard requirements as well as fit into the general scope of materials science.
Manuscripts can be submitted here https://mc.manuscriptcentral.com/ma
Please add a “note to the editor” in the submission form when you submit your manuscript to say that this is a submission for the themed collection. The Editorial Office and Guest Editors reserve the right to check suitability of submissions in relation to the scope of the collection and inclusion of accepted articles in the collection is not guaranteed. Accepted manuscripts will be added to the collection as soon as they are online, and they will be published in a regular issue of Materials Advances.