Archive for August, 2022

Repair and re-use of the outer casing for a Lithium-ion battery cell

An infographic describing a new method to repair and recycle a Li-ion battery pouch

Benign solvents for recycling and re-use of a multi-layer battery pouch
Jean E. Marshall, Bethany Middleton, Dominika Gastol, Roberto Sommerville, Con R. McElroy, Emma Kendrick and Vannessa Goodship
Mater. Adv., 2022, 3, 4973-4981, DOI: 10.1039/D2MA00239F

Meet the authors

Dr. Jean Marshall gained her Ph.D. from the University of Cambridge in 2008, for investigating surface-initiated polymer chemistry. Her subsequent research work includes postdoctoral work on stimulus-responsive polymeric materials, as well as industrial experience in novel polymers for ink formulations. Since joining the Warwick Manufacturing Group (University of Warwick) in 2019, she has worked on several projects, covering diverse areas including tailored polymers for use in Lithium-ion batteries, polymeric materials as part of a circular economy, and recycling of battery components.
Dominika Gastol joined University of Birmingham in 2019 and has been involved in recycling of Li-ion batteries from EV since then. Her research activities cover development of material recycling streams combined with remanufacturing, automated methods of electrode deposition and advanced microscopic characterisation.
Rob gained a Ph.D. in Chemical Engineering from the university of Birmingham in 2017, where he worked on producing synthetic zeolites from fly ash. Rob worked at the University of Warwick for a year on Lithium-ion battery recycling under Professor Emma Kendrick, before returning to Birmingham to join the ReLiB project in 2018. Rob Sommerville is a Postdoctoral Research Fellow with a focus on reutilisation of waste and the circular economy of Lithium Ion Batteries. He is currently a Faraday Institution Research Fellow working on the ReLiB (Recycling and Reuse of Lithium Ion Batteries) project funded by the Faraday Institution, looking at physical separation techniques in the recycling of lithium-ion batteries.
Dr Rob McElroy gained his Ph.D in 2007 at Keele University working on the production of composite materials from copolymers incorporating renewable resources. In 2009 he joined Prof. Pietro Tundo’s Carbonate Chemistry Group at Ca Foscari University of Venice looking into applications of dialkyl carbonates. He joined the Green Chemistry Centre of Excellence, University of York as a PDRA in 2011 and has worked on a variety of projects including extraction and separation in supercritical CO2, greening of pharmaceutical chemistry, production of bio-derived polymers, production of bio-derived surfactants, running an industry facing club focusing on circular economy related research called RenewChem, development of new green solvents and solvent applications. His current role is looking at green solvents in electrode formulation and as deputy director of the Circa Renewable Chemistry Institute.
Following 14 years working in industry as a plastic engineer, Dr. Vannessa Goodship joined WMG, University of Warwick in 1997. She gained a PhD in 2002 on multi-material injection moulding and has continued working across multiple sectors on polymer related topics at the academic and industry interface.
Prof Emma Kendrick is Professor of Energy Materials, lead of the Energy Materials Group (EMG) in the School of Metallurgy and Materials and co-director of the Centre for Energy Storage (BCES) at the University of Birmingham (UoB). Her research focus is upon sustainable energy storage technologies, the objective to understand the science and engineering principles which underpin manufacturing and lifetime. Before UoB, she spent two years as Reader in WMG, University of Warwick, and before academia, she led innovations in the battery industry. Latterly as Chief Technologist in Energy Storage at SHARP Laboratories of Europe Ltd (SLE) and prior to that for two highly innovative lithium-ion battery SMEs, Fife Batteries Ltd and Surion Energy Ltd. She completed her PhD in Ceramics at Ceram Research and Keele University, MSc in New Materials at University of Aberdeen, and BSC in chemistry from the University of Manchester.

An interview with Dr. Jean Marshall:

a) What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

I am currently gaining a lot of new knowledge about how lithium-ion batteries work and how complex they are as chemical systems. The electrochemistry of batteries is not necessarily an obvious area for a polymer chemist, but batteries are enormously complicated and there is a lot of scope for experimenting with novel materials in this area. The most difficult challenge here is deciding which research question to tackle first!

 

b) How do you feel about Materials Advances as a place to publish research on this topic?

Materials Advances is an excellent ‘home’ for our work. Open access publishing is great for us as academics and publishing with an RSC journal lends articles good credibility.

 

c) Can you share one piece of career-related advice or wisdom with other early career scientists?

Some researchers prefer to have laser-focus on one niche subject, and that’s definitely the approach that’s encouraged for gaining a PhD. However, in my ‘postdoctoral life’ I’ve definitely found that the most productive projects are really collaborative. So, my advice is to collaborate with as many people as possible, and make sure that they aren’t all in your direct field of research. The more people you talk to, the more you can bounce ideas around, and you’ll find yourself with far more new avenues to explore.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to the winners of the Society for Biomaterials Three Minute Thesis Award

In April 2022, the Society for Biomaterials held their annual meeting in Baltimore, USA. Journal of Materials Chemistry B and Materials Advances sponsored this event along with companion journal Biomaterials Science.

We would like to congratulate the winners of the SFB Three Minute Thesis Award. Check out the award winners and learn about their research in our interviews below.

 

Kevin Grassie: 1st Prize

My PhD research is focused on a new approach for bone regenerative engineering that combines stem cell therapy and low-intensity pulsed ultrasound (LIPUS) stimulation to enhance the repair of complex bone defects.  LIPUS serves as a non-invasive mechanical stimulus to deliver additional forces that may trigger more robust bone formation.  My work thus far aims to 1) develop a computational tool for quantifying 3D externally-applied forces on cells, and 2) use this tool to estimate the LIPUS-derived 3D acoustic radiation forces that hydrogel-encapsulated experience under different ultrasound and gel conditions. By uncovering how ultrasound influences cell behavior, we hope to develop and optimize new strategies that combine cell therapy and finely-tuned mechanical stimuli to improve bone regeneration.

1.  What inspired you to go into your area of specific research?
I have always been passionate about science and surrounded by critical-thinkers;my parents and other family members have studied and/or worked in technological or scientific industries.  I was taught at a young age to be curious about the world around us. Throughout high-school and during my undergraduate education at the University of Connecticut (UConn), I became eager to study a scientific field which sits at the intersection of my favorite disciplines: physics, mathematics, engineering, biology, and medicine. At the same time, my life-long athletic outlets in martial arts and acrobatic movements enhanced my curiosity in biomechanics and, through two injuries requiring surgery, gave me first-hand experience with clinical challenges in musculoskeletal health. Finally, in my undergraduate years at UConn, I took a tissue engineering class taught by Dr. Yusuf Khan (now my PhD advisor) that perfectly mixed all of my academic interests. These experiences all inspired me to pursue research in bone tissue/regenerative engineering, allowing me to integrate concepts from nearly every corner of science to find solutions to real-world, clinically-relevant problems.

2. What is one of the most rewarding things about your area of research?
One of the most rewarding aspects of my area of research is the collaborative and multidisciplinary nature of the work. I am very fortunate to be part of the Connecticut Convergence Institute for Translation in Regenerative Engineering at UConn Health, which offers a diverse group of faculty and students with wide-ranging expertise and technical skills.  The days are never dull and there is always a lot to learn, which is exciting to me.

3. What are your next steps for your research/career?
In my research, the next steps are to dig deeper into the mechanotransduction events and osteogenic responses in hydrogel-encapsulated cells exposed to different types of low-intensity pulsed ultrasound stimulation. As for my career after my PhD, I am still undecided but considering the many possibilities that await. My several years as a tutor for college mathematics and physics have given me a strong desire to teach in some capacity, regardless of my career path. However, my primary goal is to stay connected to cutting-edge biomedical research, whether that be through academia, industry-based research-and-development, or government agencies/institutes such as NASA. 

 

Gabriel Rodriguez- Rivera: 2nd Prize

My thesis is focused on developing an injectable hydrogel to terminate lethal arrhythmias in the ventricles without the pain induced by high-energy defibrillation shocks. Our initial work demonstrated that the proposed hydrogel electrode is conductive, hydrolytically stable, and compatible with the body, allowing us to reach areas of the heart that would not be reachable using commercial pacing leads.

1. What inspired you to go into your area of specific research?
Curiosity, possibilities, and opportunities. I worked in a biopharmaceutical company in Puerto Rico for seven years in the technology transfer of new products. Working at the interphase of development and commercialization sparked my interest in creating products that could impact the patient’s quality of life and using my tools as a chemical engineer to design and improve new biomaterials.

What is one of the most rewarding things about your area of research?
Being able to design a biomaterial that could eventually save and improve lives. Also, just seeing how we can use materials to induce a response in our bodies is incredible. Additionally, interacting with other scientists and clinicians with different areas of expertise helped me learn and grow.

What are your next steps for your research/career?
I am excited to continue understanding the fundamental properties of biomaterials for cardiovascular applications as a postdoc in Jason Burdick’s lab at the University of Colorado – Boulder.

 

Sarah Jones: 3rd Prize

I presented on my thesis project focused on developing a wrap to optimize the healing environment in large bone defects to reduce the risk of amputation or severe disability and improve patient outcomes. For wrap fabrication, I am co-electrospinning a durable synthetic polymer loaded with antibiotics along with extracellular matrix containing growth factors into a fibrous wrap. The wrap will be placed around a cement bone spacer used in a two-stage procedure to guide the membrane formation that is responsible for enveloping a bone graft and guiding bone formation. The synthetic fibers will improve barrier performance, preventing graft resorption, and will support sustained local antibiotic release to eradicate infection. Secondly, the matrix fibers will provide angiogenic and immunomodulatory cues to improve the membrane’s regenerative potential. Together this wrap aims to improve bone healing and overall quality of life for survivors of traumatic injury.

What inspired you to go into your area of specific research?
I have always been interested in pursuing a career to improve human health, specifically by developing new techniques or products. However, my interest in biomedical engineering started quite broad. I initially imagined working on prosthetics or robotic surgical systems. However, once attending classes at Texas A&M University, I became increasingly interested in biomaterials and their ability interact with the human body. I joined the Grunlan Research Group and really discovered and developed a passion for materials-guided tissue regeneration. This is the idea that the chemistry/structure of an implanted material can guide tissue regeneration and healing without exogenous biologics. This field spoke to me as a way to sustainably and reliably enhance human health. This passion led me to the Cosgriff-Hernandez Lab at The University of Texas at Austin, focusing on polymeric materials for tissue engineering, to pursue my PhD in biomedical engineering. I hope to continue to develop and refine my passion for biomaterials throughout my education and career.

What is one of the most rewarding things about your area of research?
I believe the wide application of my research area is extremely rewarding. We spend so much time developing this wrap for a specific procedure for traumatic bone injuries. However, the things we learn from this process can be applied to almost any area of the body. Discovering structure property relationships and cell material interactions can contribute to the overall body of knowledge in biomedical engineering. For example, nutrient supply and blood flow is a common hurdle faced in all areas of tissue engineering, and my project has the potential to reveal a new technique to improve vascularization in new tissue.

What are your next steps for your research/career?
After completing my doctorate, I plan to continue in the field of biomaterials for tissue engineering. I hope to join the medical device industry as a research engineer and continually work to design and develop new products to aid in tissue regeneration.

 

Please join us in congratulating all the winners of the SFB Three Minute Thesis Award!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to the winners of the Society for Biomaterials Postdoctoral Research Award

In April 2022, the Society for Biomaterials held their annual meeting in Baltimore, USA. Journal of Materials Chemistry B and Materials Advances sponsored this event along with companion journal Biomaterials Science.

We would like to congratulate the winners of the SFB Postdoctoral Research Award. Check out the award winners and learn about their research in our interview below.

 

Mykel Green: 1st Prize

The success of stem cell regenerative therapies has been crippled by low cell survival, poor retention in the target tissue, uncontrolled differentiation, and induction of host immune response. My work seeks to develop a PEG-based hydrogel carrier to address these concerns and improve engraftment efficiency by protecting the fragile blood-producing stem cells during direct delivery into the bone marrow and increasing cell retention through controlled cell release. Successful completion of this work and its subsequent studies will lead to an improved understanding of the pathophysiology of SCD and the development of my hydrogel system as a tool to target other bone marrow transplantation-reliant curative therapies.

1. What inspired you to go into your area of specific research?
While studying biology at Morehouse College, I fell in love with sickle cell disease. It’s a simple mutation, but the consequences are physiologically disastrous. Blood is nearly ubiquitous; therefore, all biomedical researchers can study it, but it is significantly under-resourced and under-studied relative to other conditions. I want to correct this injustice for patients with sickle cell and other health disparities.

2. What is one of the most rewarding things about your area of research?
I love creating polymers! Something about synthesis excites me, especially trying to develop a new protocol. It is akin to cooking from scratch; you always take great pride in the final product (except when results are unfavorable).

3. What are your next steps for your research/career?
In the immediate future, I hope to create a definitive body of research supporting my hydrogel carrier as a functional bone marrow transplantation modality in a non-diseased animal model. Eventually, I will begin testing in a sickle cell model and tailor the hydrogel to address its many challenges. I expect these studies to be a significant part of my early-stage investigator work, among many other related projects.

 

Teresa Rapp: 2nd Prize

Ruthenium Crosslinkers for Hydrogel Formation with Applications in Tissue Culture and Cell Delivery
My work focuses on the development of new molecular crosslinkers that respond to unique external stimuli, specifically light. This work discussed the synthesis and application of two new ruthenium-based hydrogel crosslinkers that can selectively respond to red (617 nm) and green (530 nm) light. Used in conjunction with an ortho-nitrobenzyl-based hydrogel crosslinker, I created a hydrogel system that softens in response to three unique, visible light inputs. I showed these hydrogels are cytocompatible, orthogonal, and can be used to study cellular fate in 3D.

1. What inspired you to go into your area of specific research?
A chemist by training, I was first inspired by the incredible potential to create new functional biomaterials by innovation in the chemistry space. This field has allowed me to pursue both my interest in basic science as I discover new molecules, and demonstrate their real world feasibility in a product that could transform the work of so many research groups across the world. I hope to continue to work at the forefront of biomaterial development throughout my academic career.

2. What is one of the most rewarding things about your area of research?
The depth of knowledge I get to pursue as I work in this area. I love my work in synthetic chemistry and materials development, and this area provides many opportunities for me to collaborate with bioengineers, biologists, clinicians, and many others; opportunities that allow me to learn about a vast range of natural sciences.

3. What are your next steps for your research/career?
I will be entering the tenure track faculty job market this year, looking to start my own research lab to explore the potential of these new photochemistries in the next generation of biomaterials.

 

Kimberly Nellenbach: 3rd Prize

I presented research focused on our lab’s novel hemostatic materials. We’ve developed Platelet-like Particles or PLPs that are capable of mimicking the ability of native platelets to form a platelet plug and stem bleeding during traumatic injury. My recent efforts have been focused on analyzing the in vivo safety and efficacy of these PLPs. In my research, it was determined that at an optimized dose, PLPs are able to significantly reduce blood loss across multiple models of traumatic injury without any deleterious off-target thrombotic effects.

1. What inspired you to go into your area of specific research?
Tissue engineering has been a long interest of mine because of family and friends who experienced tissue and organ damage due to injuries or chronic inflammatory illnesses.  I wanted to play an integral role in helping restore, maintain, or improve this damage.  I narrowed my focus of research on wound healing/hemostatic materials when I became part of the Advanced Wound Healing Lab at NCSU and wanted to contribute to moving this research forward.

2. What is one of the most rewarding things about your area of research?
One of the most rewarding aspects of developing hemostatic materials is that our lab is working towards filling a critical need, especially given the current nationwide blood shortage. 

3. What are your next steps for your research/career?
The next steps in my research career are to continue to explore ways to enhance wound healing and treat bleeding by investigating the efficacy of our lab’s platelet-like technology in different models of coagulopathies and impaired wound healing

 

We would also like to congratulate the following finalists for the SFB Postdoctoral Research Award:

Jason Guo

Ana Mora Boza

Jingjing Gao

 

Please join us in congratulating all the winners and the finalists of the SFB Postdoctoral Research Award 2022!

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)