Archive for May, 2022

Themed collection on Stability of Optoelectronic Materials and Devices

Journal of Materials Chemistry C is delighted to announce a call for papers for its latest themed collection on “Stability of Optoelectronic Materials and Devices” Guest Edited by: Yana Vaynzof (Technical University of Dresden), Zhuoying Chen (ESPCI Paris/CNRS/Sorbonne Université/Université PSL) and Dinesh Kabra (Indian Institute of Technology Bombay).

Emerging optoelectronic materials are under intense scrutiny both in terms of their fundamental properties and application in a range of electronic devices. These include, among others, organic materials, quantum dots, metal halide perovskites, metal oxides, 2D materials. These materials have already found application in solar cells, light-emitting diodes, field-effect transistors, photodetectors, lasers and many more. While the function and performance of these devices are highly important, their stability also needs to be addressed if these technologies are to find their way to industrial applications. In this themed collection, we focus on the latest insights regarding the fundamental mechanisms of material degradation, the study of active-material/device stability and the development of mitigation strategies both in terms of chemical design and device architecture engineering.

This call for papers is open for the following article types:

  • Communications
  • Full papers

Submission Deadline: 30th September 2022

If you would like to contribute to this themed collection, you can submit your article directly through the journal’s online submission service at https://mc.manuscriptcentral.com/jmchemc. Please add a “note to the editor” in the submission form when uploading your files to say that this is a contribution to the themed collection. The Editorial Office reserves the right to check suitability of submissions in relation to the scope of the collection, and inclusion of accepted articles in the final themed collection is not guaranteed.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2D C2h group III monochalcogenides with direct bandgaps and highly anisotropic carrier mobilities

An infographic highlighting the prediction of 2D group III monochalcogenides  for future high efficiency solar cells and optoelectronics

Prediction of new phase 2D C2h group III monochalcogenides with direct bandgaps and highly anisotropic carrier mobilities
Tuo Hu, Congsheng Xu, Ao Zhang and Peiyuan Yu
Mater. Adv., 2022, 3, 2213-2221, DOI: 10.1039/D1MA01068A

Meet the authors

Tuo Hu was a visiting student in Prof. Peiyuan Yu’s group at the Department of Chemistry at Southern University of Science and Technology from 2020 to 2021 where he worked on polymorphism of 2D semiconductors via DFT computation. He is currently a fourth-year undergraduate at University of California, Los Angeles majoring in Chemistry and Materials Science.
Congsheng Xu received his master’s degree from Xiangtan University where his research focused on electronic properties of multilayer GeSe and its heterojunctions. Currently, he is a doctoral student in Prof. Peiyuan Yu’s research group at Southern University of Science and Technology. His main research direction is prediction of molecular structures and calculation of electronic properties of two-dimensional materials by machine learning.
Ao Zhang received his Ph.D. in physics from Hunan Normal University in 2021. He is currently a postdoctoral at the Department of Physics in Southern University of Science and Technology. His research interests are on novel physical properties induced by spin-orbit coupling, topological semimetals, and multiferroic materials.
Peiyuan Yu obtained his Ph.D. in chemistry from University of California, Los Angeles in 2017 and was a postdoctoral fellow at Lawrence Berkeley National Laboratory from 2017 to 2019. He began his independent career as an Assistant Professor in the Department of Chemistry at Southern University of Science and Technology (SUSTech) in 2019. Peiyuan’s research program uses computational chemistry to study a wide range of phenomena in chemistry and materials science, with a focus in understanding the reaction mechanisms and origins of selectivity of organic reactions.

(a) What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

In this work, we are most excited to discover that some novel polymorphs of two-dimensional materials give rise to very interesting and exotic electronic properties. For example, the new C2h polymorph of 2D group III monochalcogenides features a direct bandgap which has not been found in other known single-layer phases. However, conventional computational methods to predict or design novel polymorphs are often limited by large computational costs. Therefore, we investigated the use of deep learning methods based on generative adversarial neural networks to quickly and comprehensively discover different phases of two-dimensional materials. This project requires knowledge and specialties from diverse disciplines such as computational chemistry, materials science, and physics. Besides, the rapid development of new computational techniques constantly motivates us to try to apply new technologies, which is quite challenging and intriguing.

 

(b) How do you feel about Materials Advances as a place to publish research on this topic?

Materials Advances is designated for interdisciplinary research and insights in the field of materials research, and our work is a combination of computer science and materials science, so I think it is a perfect match for this work to be published on Materials Advances. The professional editorial team and expert reviewers made the publishing process highly efficient.

 

(c) Can you share one piece of career-related advice or wisdom with other early career scientists?

For undergraduate students who are interested in scientific research, I would like to encourage them to actively participate and collaborate with graduate students and postdocs in research projects as early as possible and don’t be shy to share their hypotheses or insights.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Call for papers: Themed collection on Materials Informatics

Guest Editors: Chris Pickard (University of Cambridge, UK), Jörg Behler (Georg-August-Universität Göttingen, Germany), and Krishna Rajan (University at Buffalo, USA)

In this themed collection, we invite contributions in materials informatics. Manuscripts are encouraged in topics ranging from novel computational and experimental methods to state-of-the-art applications.

The discipline of Materials Informatics has emerged from a fusion of increasing availability of materials data, high throughput experimental and computational methods, first principles and other advanced materials models, and machine learning. It has been fuelled by the dramatic growth in available computational power, and its ubiquity.

If you are interested in contributing to this collection please get in touch with the Editorial Office by email.

Please add a “note to the editor” in the submission form when you submit your manuscript to say that this is a submission for the themed collection. The Editorial Office and Guest Editors reserve the right to check suitability of submissions in relation to the scope of the collection and inclusion of accepted articles in the collection is not guaranteed. All manuscripts will be subject to the journal’s usual peer review process. Accepted manuscripts will be added to the online collection as soon as they are online, and they will be published in a regular issue of Materials Advances.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Call for papers: Themed collection on Biomass Materials

Guest Editors: Meisha Shofner (Georgia Institute of Technology) and Andy Tennyson (Clemson University)

In this themed collection, we will collect primary research and review articles from across the area of biomass materials. Manuscripts are encouraged from a broad range of topics related to biomass materials including synthesis/processing, biological-synthetic interfaces, characterization, properties, degradation and end-of-life, lifecycle/economic analysis, and application studies.

Biomass was used by humans to formulate some of the earliest polymers, and contemporary environmental concerns have served as the impetus for the researchers and industry to return to biomass as precursors for engineered materials. Biomass materials are now poised to re-emerge as materials of construction across a range of applications that currently employ synthetic plastics and materials. In adapting biological compounds and materials for use in synthetic systems, the desired biological compound or material of interest is almost always found in extremely complex mixtures of structurally- and functionally-diverse molecules and macromolecules which are impossible to separate. Furthermore, completely removing all water from many biological compounds and materials causes them to lose the desired structure, property, or function of interest. To address these challenges and facilitate this shift in materials usage, interdisciplinary research spanning fundamental understanding of synthesis and properties to translational studies for targeted applications is needed.

If you are interested in contributing to this collection please get in touch with the Editorial Office by email.

Please add a “note to the editor” in the submission form when you submit your manuscript to say that this is a submission for the themed collection. The Editorial Office and Guest Editors reserve the right to check suitability of submissions in relation to the scope of the collection and inclusion of accepted articles in the collection is not guaranteed. All manuscripts will be subject to the journal’s usual peer review process. Accepted manuscripts will be added to the online collection as soon as they are online, and they will be published in a regular issue of Materials Advances.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Editor’s Choice Collection on solid-state ion conductors

We are delighted to announce a new Journal of Materials Chemistry A and Materials Advances Editor’s Choice Collection on solid-state ion conductors.

 The newly appointed Journal of Materials Chemistry A and Materials Advances Advisory Board member, Stephen Skinner (Imperial College London, UK) who has recently come to the end of his time as an Associate Editor, has gathered the journals’ most outstanding recent papers in solid-state ion conductors for this Editor’s Choice collection. In order to highlight developments in solid-state ion conductors, this online collection includes recent manuscripts from Journal of Materials Chemistry A and Materials Advances on the topic.

Papers published in Materials Advances are gold open access and freely accessible. Those published in Journal of Materials Chemistry A are free to access until 10 June 2022. You can read the full collection online.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)