Self-assembled growth of Sn@CNTs on vertically aligned graphene for binder-free high Li-storage and excellent stability

The first thing I did after reading this article was google Li-ion batteries. I know the general stuff about them but I wanted to know more – typical scientist. They really are pretty fantastic, even lithium itself is rather special. I have never really thought about it before but lithium is the lightest of all the metals yet it has the greatest electrochemical potential and provides the largest energy density for weight. Although Li-ion does have a slightly lower energy density than lithium metal it makes a safer battery, especially where recharging is concerned. Sony were the first to commercialise the use of the Li-ion battery in 1991 and they are still the battery of choice especially for tech items such as mobile phones.
Anyway enough of a history lesson. Despite being an incredily promising battery there are drawbacks to the use of Li-ion batteries. One of which is addressed in this work by Li et al is the lack of suitable electrodes with enhanced energy and power density, cycling stability, energy efficiency and cycling life. Metallic Sn has attracted significant attention as a promising anode material that over comes some of these issues. This paper reports for the first time a new stratergy to grow  self-assembled tin carbon nanotubes on vertically aligned graphene. The work uses microwave plasma irradiation to produce the encapsulated Sn nanoparticles in the CNTs.

The resulting Sn anode is shown to give the best performance values of any other Sn anode to date. The authors write that they “expect the proposed route to be adopted by the rapidly growing energy storage research community” and with these results they might not be far off the mark.

Self-assembled growth of Sn@CNTs on vertically aligned graphene for binder-free high Li-storage and excellent stability
Na Li, Huawei Song, Hao Cui, Guowei Yang and Chengxin Wang
J. Mater. Chem. A, 2014, 2, 2526-2537. C3TA14217E

H. L. Parker is a guest web writer for the Journal of Materials Chemistry blog. She currently works at the Green Chemistry Centre of Excellence, the University of York.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)