A trio of hot papers: Sequestering oil from emulsions, reducing graphene oxide & simulating Li ion batteries

Read all the articles for free until 25th June

Sequestration of edible oil from emulsions using new single and double layered microcapsules from plant spores Sequestration of edible oil from emulsions using new single and double layered microcapsules from plant spores

Microcapsules developed from modified plant spores can sequester efficiently edible oils from oil-in-water emulsions. The microcapsules contain either a single layered shell or double layered shell and are modified by converting their surface hydroxyl groups (alcohols, phenols carboxylic acids) into salts (Na+ and K+), acetates and methyl ethers. (J. Mater. Chem., 2012, 22, 9767-9773)

Chemical reduction of an aqueous suspension of graphene oxide by nascent hydrogenChemical reduction of an aqueous suspension of graphene oxide by nascent hydrogen

South Korean scientists have shown that nascent hydrogen can effectively reduce graphene oxide. Using a combination of X-ray photoelectron spectroscopy and thermogravimetric analysis they demonstrate that most of the labile oxygen functional groups were removed during nascent hydrogen reduction. Compared to other reducing agents the use of low cost, non-toxic metals for nascent hydrogen reduction is a promising method for bulk preparation of high quality reduced graphene oxide. (J. Mater. Chem., 2012, 22, 10530-10536)

Structural requirements for fast lithium ion migration in Li10GeP2S12 Structural requirements for fast lithium ion migration in Li10GeP2S12

Developing high performance electrolytes that combine fast lithium ion conductivity with electrochemical stability and safety is one of the challenges facing scientists creating the next generation of batteries. In this hot article atomistic molecular dynamics simulations shed new light on the dynamic lithium distribution, structural stability and ion transport mechanism in the ultrafast ion conductor Li10GeP2S12. (J. Mater. Chem., 2012, 22, 7687-7691)

Don’t forget to keep up-to-date with all the latest research you can sign-up for the Journal of Materials Chemistry RSS feed or Table of contents alert.

To keep up with the journal news you can Like us on Facebook or Follow us on Twitter.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)