5th International IUPAC Conference on Green Chemistry

The 5th IUPAC International Conference on Green Chemistry will be taking place August 17–21 2014, in Durban, South Africa.

The main objective of the conference is to emphasize the importance of green chemistry for sustainable development, and to promote novel research and collaborations, by bringing together experts and interested parties from all over the world and from diverse bodies – from the academia to the industry and to governments.

The conference will be a multidisciplinary event considering all the major areas of green chemistry, including green synthesis processes, catalysis, environmentally benign solvents, energy storage, biofuels, green chemistry education, policies, and many other interesting topics. Interfaces with other sciences and other research areas will be actively encouraged. Special attention will also be given to the roles of green chemistry in fast-growing economies and to the promotion of green chemistry in the African continent.

Confirmed plenary speakers include:

  • Peter Mahaffy, King’s University College, Canada
  • Claudio Mota, Universidade Federal do Rio de Janeiro, Brazil
  • Bruno Pollet, University of the Western Cape, South Africa
  • Pietro Tundo, Ca’Foscari University, Italy
  • Tao Zhang, Institute of Chemical Physics, China

The conference will also feature a special keynote talk and medal presentation to our 2014 Green Chemistry Award winner, Professor Mike North from the University of York.

The conference is being supported by the RSC‘s Pan Africa Chemistry Network, which aims to help African countries to integrate into regional, national and internation scientific networks. The PACN has awarded a number of bursaries for African scientists to attend this conference. It is also sponsoring a number of plenary speakers.

The deadline for registration is June 30 2014.

For more information and to register, please visit the website: www.saci.co.za/greenchem2014

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A cellulose/superbase catalyst for the synthesis of cyclic carbonates

A wide variety of metal complexes act as efficient catalysts for the synthesis of cyclic carbonates from carbon dioxide and epoxides; organic bases, such as pyridine, are often useful co-catalysts in the reaction. Metal-free catalyst systems are also effective, and polymers having abundant hydroxyl groups, such as cellulose, are known to catalyze cycloaddition when combined with an alkali metal halide. Building upon these findings, researchers from the Chinese Academy of Sciences have developed a metal-free and halide-free catalyst system using a combination of a superbase and a hydrogen bond donor.

Among the bases and hydrogen bond donors investigated, a cellulose-DBU catalyst system exhibited the highest conversion to propylene carbonate. Optimization of the reaction conditions led to a further study using an array of terminal epoxides; the highest yield and selectivity was observed for ethylene oxide, with lower yields for more sterically hindered substrates. The catalyst system also proved to be recyclable for up to four trials without an appreciable loss of activity or selectivity.

Read the full article now:

Superbase/cellulose: an environmentally benign catalyst for chemical fixation of carbon dioxide into cyclic carbonates
Jian Sun, Weiguo Cheng, Zifeng Yang, Jinquan Wang, Tingting Xu, Jiayu Xin and Suojiang Zhang
Green Chem. 2014, Advance Article, DOI: 10.1039/C3GC41850B

Jenna Flogeras obtained her B.Sc. and M.Sc. in Chemistry from the University of New Brunswick (Fredericton), Canada. Currently a Ph.D. student at Memorial University of Newfoundland, she is excited to spend some time outside the laboratory this summer to explore Thailand and Southeast Asia.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

“Sustainability in Chemistry” – September 28-30, 2014, Erlangen, Germany

In their biannual meeting, the division “Sustainable Chemistry” within the German Chemical Society (GDCh) will discuss all topics related to sustainable and green chemistry, methodology, synthesis and processes. In the upcoming meeting autumn 2014, the scientific focus will lie on:

  • Sustainable Synthesis Including Catalysis and Biotechnology
  • Green solvents
  • Renewable Feedstocks
  • Sustainable Macromolecular Chemistry
  • “Assessment and politics”, Green chemistry education

 The submission of both poster and oral contributions via the conference website is now open

 https://www.chemie.uni-erlangen.de/suschem2014/

 Invited lectures

  • Shu Kobayashi, Tokyo, J
  • Ulf Hanefeld, Delft, NL, “From sp2 to sp3 utilising enzymes”
  • Konrad Hungerbühler, ETH Zürich, Ch, “Sustainability Indicators in Chemistry”
  • Cor Koning, Eindhoven, NL, “New developments in sustainable and renewable coating materials”
  • Bert Sels, Leuven, BE, “A lignocellulosic biorefinery concept in Leuven: a chemist’s view”
  • Matthias Beller, Rostock, D,  “Chemistry goes Green: Technologies for the Development of a Sustainable Society “
  • Michael Dreja, Henkel AG & Co KGaA, Düsseldorf, D, “Sustainable detergents – where are we on our way towards 2030?”
  • Harald Gröger, Bielefeld, D, “Combination of the two “worlds” chemo- and biocatalysis towards one-pot processes in water”
  • Burkhard König, Regensburg, D, “Chemical photocatalysis using visible light”
  • Andreas Künkel, Biopolymers , BASF, D, “Symbiosis of Chemistry and Biology: BASF’s Biodegradable and Renewable Polymers”
  • Uwe Lahl, Darmstadt, D, “Indirect Land Use Change ( iLUC)”
  • Alexander Vyhnal, STAEDTLER Mars GmbH & Co. KG, D, “WOPEX – A sustainable materials innovation by STAEDTLER”
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Inexpensive ionic liquids: Process intensification the key to affordability

James Sherwood is a guest web-writer for Green Chemistry. James is a research associate in the Green Chemistry Centre of Excellence at the University of York. His interests range from the certification and application of bio-based products, to the understanding of solvent effects in organic synthesis.

Green Chemistry DOI: 10.1039/C4GC00016AIonic liquids have been touted as green solvents since even before the definition of green chemistry was presented in Anastas and Warner’s seminal text. Academic research on ionic liquids, across many varied applications, is a strong and still growing area of interest. Despite this, the commercialisation of ionic liquid products, and their utilisation as solvents in manufacturing processes, has been limited because of their high costs.

In this latest work from Jason Hallett and colleagues from Imperial College London, the economic feasibility of two ionic liquids synthesized by acid–base neutralization has been assessed. It was found that process intensification dramatically reduces the end cost of these ionic liquids, and is recommended in this latest work as a means of reducing the cost of ionic liquids so that their potential in commercial applications may be realised.

The prices of triethylammonium hydrogen sulfate and 1-methylimidazolium hydrogen sulfate produced with optimised manufacturing methods are estimated to be as little as $1.24 kg−1 and $2.96 kg−1 respectively, which are largely dictated by the raw material costs. These prices are similar to conventional organic solvents such as acetone, while at present typical ionic liquid prices can be two orders of magnitude greater than this. The authors conclude that  more effort should be dedicated to developing new ionic liquids that can be synthesised from affordable raw materials in very few steps.

Inexpensive ionic liquids: [HSO4]-based solvent production at bulk scale

L. Chen et al., Green Chem., 2014. DOI: 10.1039/C4GC00016A

http://pubs.rsc.org/en/content/articlelanding/2014/gc/c4gc00016a#!divAbstract

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Flue gas reclaimed as polymer feedstock

Jennifer Newton writes about a Green Chemistry article in Chemistry World

The first systematic environmental assessment of an industrial plant that produces polyols from carbon dioxide has revealed that they significantly reduce both carbon dioxide emissions and the demand on fossil fuel reserves.

Polyols are the major component of polyurethanes, which make up foams or thermoplastic urethanes in a wide range of applications from mattresses to ski boots. Most polymers are made from fossil fuel-based feedstocks.

To read more on this article please visit Chemistry World.

Life cycle assessment of polyols for polyurethane production using CO2 as feedstock: insights from an industrial case study
Niklas von der Assen and André Bardow  
Green Chem., 2014,16, 3272-3280
DOI: 10.1039/C4GC00513A

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

10th International Conference on Renewable Resources & Biorefineries

The 10th International Conference on Renewable Resources and Biorefineries is taking place on June 4-6, 2014 in Valladoid, Spain. A range of delegates from university, industry, governmental and non-governmental organizations and venture capital providers will present their views on industrial biotechnology, sustainable (green) chemistry and agricultural policy related to the use of renewable raw materials for non-food applications and energy supply.

The conference further aims to provide an overview of the scientific, technical, economic, environmental and social issues of renewable resources and biorefineries to give an impetus to the biobased economy and to present new developments in this area. The conference will provide a forum for leading political, corporate, academic and financial people to discuss recent developments and set up collaborations.

The three day international conference will consist of plenary lectures and oral presentations by international experts, a poster session and an exhibition. Companies and research organizations are also offered the opportunity to organize a satellite symposium. Around 400 international participants are expected from over 30 countries.

A great line-up of speakers has been confirmed, with the following as just a small selection:

  • Prof. Richard Wool, University of Delaware, USA
  • Prof. Karen Wilson, European Bioenergy Research Institute
  • Prof. Eric Beckmann, University of Pittsburgh, USA
  • Prof. Yusuf Christi, Massey University, New Zealand

There’s still time to sign up with pre-registration closing on June 1, 2014.

Visit the website for more information and to register: www.rrbconference.com/rrb-10-welcome

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Freeze-dried cells make better biocatalysts

Jenifer Mizen writes about a Green Chemistry article in Chemistry World

A biocatalytic cascade using mashed-up cells has overcome extraction and solubility problems associated with using enzymes in chemical syntheses.

Enzymes are excellent catalysts for making chiral molecules. One-pot reactions under mild conditions are often possible with more than one catalyst, allowing multi-step syntheses in one go. But if enzymes are used as catalysts, they have to be extracted and purified, and expensive co-factors often need to be added. There are also solubility issues: enzymes are usually most active in buffers, but many of their substrates are hydrophobic, limiting the productivity of the biotransformation because the substrate won’t dissolve in aqueous buffers.

It is thought that the cell envelope helps to stabilise the enzymes in organic solvent

 To read more on this article please visit Chemistry World.

A two-step biocatalytic cascade in micro-aqueous medium: using whole cells to obtain high concentrations of a vicinal diol
Andre Jakoblinnerta and Dörte Rother  
Green Chem., 2014, Advance Article
DOI: 10.1039/C4GC00010B

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT articles in Green Chemistry

Take a look at the latest selection, which are free for you to read for the next four weeks! Graphical abstract: Preparation of 2,3-dihydroquinazolin-4(1H)-one derivatives in aqueous media with β-cyclodextrin-SO3H as a recyclable catalyst

Polyethylene glycol (PEG) as a reusable solvent medium for an asymmetric organocatalytic Michael addition. Application to the synthesis of bioactive compounds
Karla S. Feu, Alexander F. de la Torre, Sandrina Silva, Marco A. F. de Moraes Junior, Arlene G. Corrêa and Márcio W. Paixão
Green Chem., 2014, Advance Article
DOI: 10.1039/C4GC00098F, Paper

Pressurized hot water flow-through extraction system scale up from the laboratory to the pilot scale
P. O. Kilpeläinen, S. S. Hautala, O. O. Byman, L. J. Tanner, R. I. Korpinen, M. K-J. Lillandt, A. V. Pranovich, V. H. Kitunen, S. M. Willför and H. S. Ilvesniemi
Green Chem., 2014, Advance Article
DOI: 10.1039/C4GC00274A, Paper

A one-pot biosynthesis of reduced graphene oxide (RGO)/bacterial cellulose (BC) nanocomposites
Avinav G. Nandgaonkar, Qingqing Wang, Kun Fu, Wendy E. Krause, Qufu Wei, Russel Gorga and Lucian A. Lucia
Green Chem., 2014, Advance Article
DOI: 10.1039/C4GC00264D, Paper

Preparation of 2,3-dihydroquinazolin-4(1H)-one derivatives in aqueous media with β-cyclodextrin-SO3H as a recyclable catalyst
Jian Wu, Xianli Du, Juan Ma, Yuping Zhang, Qingcai Shi, Lijun Luo, Baoan Song, Song Yang and Deyu Hu
Green Chem., 2014, Advance Article
DOI: 10.1039/C3GC42400F, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT articles in Green Chemistry

Take a look at the latest selection, which are free for you to read for the next four weeks! Graphical abstract: Laccase/TEMPO-mediated system for the thermodynamically disfavored oxidation of 2,2-dihalo-1-phenylethanol derivatives

Laccase/TEMPO-mediated system for the thermodynamically disfavored oxidation of 2,2-dihalo-1-phenylethanol derivatives
Kinga Kędziora, Alba Díaz-Rodríguez, Iván Lavandera, Vicente Gotor-Fernández and Vicente Gotor
Green Chem., 2014, Advance Article
DOI: 10.1039/C4GC00066H, Communication

Guidelines based on life cycle assessment for solvent selection during the process design and evaluation of treatment alternatives
Antonio Amelio, Giuseppe Genduso, Steven Vreysen, Patricia Luis and Bart Van der Bruggen
Green Chem., 2014, Advance Article
DOI: 10.1039/C3GC42513D, Paper

Multicomponent reactions: advanced tools for sustainable organic synthesis
Răzvan C. Cioc, Eelco Ruijter and Romano V. A. Orru
Green Chem., 2014, Advance Article
DOI: 10.1039/C4GC00013G, Perspective

Aerobic homocoupling of arylboronic acids catalysed by copper terephthalate metal–organic frameworks
Pillaiyar Puthiaraj, Palaniswamy Suresh and Kasi Pitchumani
Green Chem., 2014, Advance Article
DOI: 10.1039/C4GC00056K, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2nd International Green Catalysis Symposium

Congratulations to Enguerrand Blondiaux and Thomas Dombray, who were awarded Royal Society of Chemistry poster prizes at the 2nd International Green Catalysis Symposium.

Green Chemistry and Catalysis Science and Technology were pleased to sponsor the Symposium, which took place on April 2-4th 2014 in Rennes, France with the aim of presenting to academic and industry researchers the recent developments in the fast growing field of green catalysis.
The Symposium was attended by Green Chemistry Editorial Board member Professor Shu Kobayashi, who presented the Green Chemistry poster prize to Enguerrand Blondiaux (CEA/IRAMIS/SIS2M/CNRS) for his poster entitled ‘Metal-free reduction of carbon dioxide using hydroboranes’.
Prof Shu Kobayashi presents the Green Chemistry poster prize to Enguerrand Blondiaux

Thomas Dombray (University of Rennes) was awarded a Catalysis Science & Technology poster prize for his poster ‘Cobalt carbonyl catalyzed hydrosilylation of amides’. His prize was presented by Catalysis Science & Technology Editorial Board member Dr Christian Bruneau.

Thomas Dombray receives a Catalysis Science & Technology poster prize from Dr Christian Bruneau
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)