Renewable Chemicals from Lignin Symposium

A one day symposium is being held on 18th November 2014 in London, UK on the subject of Renewable Chemicals from Lignin. This event aims to bring together researchers from academia and industry at all levels interested in the chemistry, processing and applications of lignin in order to share the science, address the challenges in the field and build collaborations for the future.

The following four topics will be covered with a range of presentations from UK and international speakers.

  • Lignin structure
  • Bio-catalytic conversion
  • Chemo-catalytic breakdown
  • Applications

The programme of this meeting will feature both oral, flash poster and conventional poster presentations. The Scientific committee involved in organising the event includes: Tim BuggUniversity of Warwick, (Chair), Simon McQueen MasonUniversity of York, Rob FieldJohn Innes Centre, Norwich, Mike JarvisUniversity of Glasgow and Adrian HigsonNNFCC, York and Bio Base NWE project.

Registration is now open, so visit the website to find out more!

Renewable Chemicals from Lignin, Chemistry Centre, London, UK, 18th November 2014

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A graphene photocatalysed synthesis of chiral alcohols

James Sherwood is a guest web-writer for Green Chemistry. James is a research associate in the Green Chemistry Centre of Excellence at the University of York. His interests range from the certification and application of bio-based products, to the understanding of solvent effects in organic synthesis.

The asymmetric, enzymatic reduction of ketones has been enhanced with a graphene derived light harvesting photocatalyst. Typically the use of reducing enzymes for specialty chemical synthesis is restricted by the cost of the redox cofactor. In this example the enzyme cofactor is recycled via a rhodium complex. The energy needed to do this is delivered by the chlorophyll mimicking graphene. Enantioselectivity to the resulting alcohols is high, and applicable to both aliphatic and aromatic ketones.

Graphene photocatalysis bio-catalysis chiral alcohols

The scientists from KRICT responsible for this research believe that artificial photosynthesis using functionalised graphene shows promise for energy generation and sustainable chemical production in the near future, with applications including carbon dioxide sequestering reactions already proven as viable.

Check out the full article – online now!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Chemistry Impact Factor rises to 6.85

We are delighted to announce that Green Chemistry’s Impact Factor* has risen to a new high of 6.85!

A huge thank you goes to all of our authors, referees and Editorial and Advisory Board members for their help and support on the Journal.

Green Chemistry is celebrating fifteen years of publishing cutting edge research on the development of alternative sustainable technologies and to mark the occasion we have invited contributions from authors who have green coverhighly cited articles from each of the past 15 years. The result is a growing collection which you can read online here.

We invite you to submit your latest research on sustainable chemistry and technology to Green Chemistry.

Read more about the 2013 Impact Factors from across RSC Publishing on the RSC Publishing Blog.

*The Impact Factor provides an indication of the average number of citations per paper. Produced annually, Impact Factors are calculated by dividing the number of citations in a year by the number of citeable articles published in the preceding two years. Data based on 2013 Journal Citation Reports®, (Thomson Reuters, 2014).

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Plant plastics reach for the stars – Green Chemistry article in Chemistry World

Aminoethoxy ethanol substituted phosphazene

Virginia Nykänen and colleagues at Aalto University, Finland have transformed rice starch into a temporally stable, optically transparent, biodegradable plastic with a high degree of mechanical strength and good thermal resistance.

This important step towards bioplastics made from simple and sustainable resources has potential applications in food packaging and biomedical materials.

Read the full article here in Chemistry World.

This paper is free to access until 8 September, so download it now:

V P S Nykänen et al, Green Chemistry, 2014, DOI: 10.1039/c4gc00794h

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

3rd International Symposium on Green Chemistry

The 3rd International Symposium on Green Chemistry will be taking place from May 3–7, 2015 in La Rochelle, France.

ISGC-2015 will bring together all those who are involved with research in green chemistry: academic scientists, R&D researchers, key opinion leaders, and young researchers. A unique scientific program is planned with speakers from international academic institutions, companies in chemical, biotechnological, cosmetical and pharmaceutical sectors, start-ups and engineering.

The symposium will offer 200 oral communications (flash & oral communications) and several poster sessions. During ISGC-2015 the organizing committee with the expertise of the scientific committee will present green chemistry awards: an ISGC “Green Chemistry” award, a Young Researcher award (<40years) and poster awards.

Each topic will be introduced by a plenary lecture delivered by an eminent scientist of the field. Several plenary speakers have already been confirmed including:

ISGC 2015 invites all interested researchers to apply to the call for communication, so visit the website for further information and to get involved now!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2nd International Symposium on C–H Activation

Congratulations to Daniel Zell and Tatiana Besset, who were awarded Royal Society of Chemistry poster prizes at the 2nd International Symposium on C–H Activation.

Green Chemistry was pleased to sponsor the symposium, which took place from June 30th – July 3rd, 2014 in Rennes, France with the aim of presenting to academic and industry researchers the recent researches and developments of C-H bond activation/functionalization.

The symposium was attended by Chao-Jun Li, Editorial Board member of Green Chemistry who presented the poster prize to Daniel Zell, University of Göttingen, Germany for his poster entitled “Meta-selective C−H bond alkylation by ruthenium catalysis”.

Tatiana Besset, University of Rouen, France was also awarded a poster prize for her poster with the title “Direct introduction of fluorinated groups on alkenes and alkynes”.

For more details about the meeting, visit the symposium website.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Catalytic upgrading of fermentation alcohols

James Sherwood is a guest web-writer for Green Chemistry. James is a research associate in the Green Chemistry Centre of Excellence at the University of York. His interests range from the certification and application of bio-based products, to the understanding of solvent effects in organic synthesis.

Direct self-condensation of bio-alcohols in the aqueous phase

Fermentation strategies for the production of bio-fuels will continue to grow in importance, and as they do, problems with retrieving the products from dilute fermentation broths and the low energy content of short-chain alcohols will be magnified. A partnership between the energy company Shell and the Qingdao Institute of Bioenergy and Bioprocess Technology is addressing this challenge by using catalysis to condense bio-ethanol or bio-butanol via the Guerbet reaction to give improved, higher-alcohol biofuels.

An immobilised iridium catalyst was successful in converting 1-butanol in aqueous solution to 2-ethyl-1-hexanol with >85% selectivity over five consecutive reactions. The upgrading of ethanol was less selective to a single product: In addition to 1-butanol, 2-ethyl-1-butanol and even traces of 1-octanol were observed. A phenanthroline ligand is required to facilitate the aqueous phase reaction, conditions that mimic the environment of a fermentation broth. This approach also negates the usual requirement of hydrogen gas to reduce the β-unsaturated aldehyde intermediate, with the reaction proceeding under air.

These results all indicate that this reaction shows great potential for producing biofuels, as well as many other useful chemicals, in a cheaper and more efficient way.

Check out the full article – online now!

Direct self-condensation of bio-alcohols in the aqueous phase

G. Xu, T. Lammens, Q. Liu, X. Wang, L. Dong, A. Caiazzo, N. Ashraf, J. Guan and X. Mu, Green Chem., 2014, Advance Article.
DOI: 10.1039/C4GC00510D
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to the poster prize winners at NSC2014

Congratulations to the poster prize winners at NSC2014 (16th Nordic Symposium on Catalysis). Green Chemistry and Catalysis Science & Technology were pleased to sponsor a poster prize each at the symposium, which were awarded as follows:

Green Chemistry poster prize
awarded to Aron Dombovari, University of Oulu
for “Photocatalytic processing of algae

Catalysis Science & Technology poster prize
awarded to Jacob O. Abildstrøm, Technical University of Denmark
for “Investigation of Mesoporous TS-1 for the Catalytic Formation of N-oxides

The prize winners received a certificate and a book from Royal Society of Chemistry Books.

You can read more about the Poster Award and find out about the Nordic Symposium on the UiO website.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New articles added to 15 years of Green Chemistry web collection

To mark the occasion of Green Chemistry completing fifteen years of publication we invited contributions from authors who have had highly cited articles from each of the past 15 years. The result is a growing web collection covering topics of current importance in green chemistry from those who have contributed to developing the field. Details of the contributors, their highly cited article from the year they are representing, and their recent contribution are below.

Two recent additions to the collection are from Professor Chinzia Chiappe (University of Pisa), and Dr Peter Dunn (Pfizer).

Professor Chiappe’s 2006  article Acute toxicity of ionic liquids to the zebrafish (Danio rerio)is amongst the highest that year. She has continued on this ionic liquids theme by contributing to the 15 years of Green Chemsitry collection a Critical Review asking  Are ionic liquids a proper solution to current environmental challenges?

In 2007, Dr Dunn was the lead author on a Perspective article produced from the ACS GCI Pharmaceutical Roundable entitled Key green chemistry research areas—a perspective from pharmaceutical manufacturers. His contribution to the 15 years of Green Chemistry collection is another Perspective with an Industrial themePharmaceutical Green Chemistry process changes – how long does it take to obtain regulatory approval?’.

All of these articles are free to access until the end of July 2014. The 15 Years of Green Chemistry collection will be added to throughout 2014 and you can access the articles by clicking on the titles below, or look at the full collection of recent articles online here.

Year 15 Years of Green Chemistry Contribution Original Highly Cited Article
1999 Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation
Rajender S. Varma, 2014, Perspective
Solvent-free organic syntheses. using supported reagents and microwave irradiation, Rajender S. Varma, 1999, Paper
2000 Food waste biomass: a resource for high-value chemicals
Lucie A. Pfaltzgraff, Mario De bruyn, Emma C. Cooper, Vitaly Budarin and James H. Clark, 2013, Perspective
Preparation of a novel silica-supported palladium catalyst and its use in the Heck reaction
James H. Clark, Duncan J. Macquarrie and Egid B. Mubofu, 2000, Paper
2001 Mixing ionic liquids – “simple mixtures” or “double salts”?
Gregory Chatel, Jorge F. B. Pereira, Varun Debbeti, Hui Wang and Robin D. Rogers, 2014, Critical Review
Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation, Jonathan G. Huddleston, Ann E. Visser, W. Matthew Reichert, Heather D. Willauer, Grant A. Broker and Robin D. Rogers, 2001, paper
2005 Green and sustainable manufacture of chemicals from biomass: state of the art
Roger A. Sheldon, 2014, Critical Review
Green solvents for sustainable organic synthesis: state of the art
Roger A. Sheldon, 2005, Critical Review
2006 Are ionic liquids a proper solution to current environmental challenges?
Giorgio Cevasco and Cinzia Chiappe, 2014, Critical Review
Acute toxicity of ionic liquids to the zebrafish (Danio rerio)
Carlo Pretti, Cinzia Chiappe, Daniela Pieraccini, Michela Gregori, Francesca Abramo, Gianfranca Monni and Luigi Intorre, 2006, Communication
2007 Pharmaceutical Green Chemistry process changes – how long does it take to obtain regulatory approval?
Peter J. Dunn, 2013, Perspective
Key green chemistry research areas—a perspective from pharmaceutical manufacturers
David J. C. Constable, Peter J. Dunn, John D. Hayler, Guy R. Humphrey, Johnnie L. Leazer, Jr., Russell J. Linderman, Kurt Lorenz, Julie Manley, Bruce A. Pearlman, Andrew Wells, Aleksey Zaks and Tony Y. Zhang, 2007, Perspective
2008 Towards resource efficient chemistry: Tandem reactions with renewables
Arno Behr, Andreas Johannes Vorholt, Thomas Seidensticker and Karoline Anna Ostrowski, 2013, Critical Review
Improved utilisation of renewable resources: New important derivatives of glycerol
Arno Behr, Jens Eilting, Ken Irawadi, Julia Leschinski and Falk Lindner, 2008, Critical Review
2009 Conversion of glucose and cellulose into value-added products in water and ionic liquids
Jinliang Song, Honglei Fan, Jun Ma and Buxing, 2013, Tutorial Review
Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid
Suqin Hu, Zhaofu Zhang, Jinliang Song, Yinxi Zhou and Buxing Han, 2009, Communication
2011 Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels
Maria J. Climent, Avelino Corma and Sara Iborra, 2014, Critical Review
Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts
Maria J. Climent, Avelino Corma and Sara Iborra, 2011, Critical Review
2012 Continuous process technology: a tool for sustainable production
Charlotte Wiles and Paul Watts, 2014, Tutorial Review
Continuous flow reactors: a perspective
Charlotte Wiles and Paul Watts, 2012, Tutorial Review
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Wool Keratin Solubility in Ionic Liquids

Wool waste from the manufacturing of textiles is a renewable source of the biopolymer, keratin. The cysteine building blocks of keratin give rise to hydrogen bonding and covalent disulfide bonds; thus, harsh conditions or toxic reagents are required for its processing in conventional solvents. Alternative media, such as ionic liquids (ILs) and deep eutectic solvents, have been investigated for the processing of cellulose and lignin. Polypeptide-based keratin from Merino wool, on the other hand, may be used to produce protein fiber, but is less widely studied. In this paper, ILs and deep eutectic solvents were evaluated for their ability to dissolve wool keratin, and the regenerated material was characterized.

The researchers discovered that the wool did not appreciably dissolve in any of the deep eutectic solvents tested. In contrast, ILs were effective solvents and the solubility of wool was enhanced by adding 2-mercaptoethanol as a reducing agent. Characterization data revealed that the structure of the regenerated wool was altered from the raw material by a loss of crystallinity. Breakdown of the protein into smaller, water-soluble fragments also occurred, but this material could not be separated from the ILs.

Dissolution and regeneration of wool keratin in ionic liquids
Azila Idris, R. Vijayaraghavan, Usman Ali Rana, A.F. Patti, and D. R. MacFarlane
Green Chem. 2014, 16, 2857.
DOI: 10.1039/C4GC00213J

Jenna Flogeras obtained her B.Sc. and M.Sc. in Chemistry from the University of New Brunswick (Fredericton), Canada. Currently a Ph.D. student at Memorial University of Newfoundland, she is excited to spend some time outside the laboratory this summer to explore Thailand and Southeast Asia.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)