Author Archive

‘Super solvents’ shortlisted for most important British innovation of the 21st Century

Work by scientists from Queen’s University Belfast on ionic liquid chemistry is in the running to be named the most important British innovation of the 21st Century. 

The work of staff in the Queen’s University Ionic Liquid Laboratories (QUILL) Research Centre is up against 11 other innovations from across the United Kingdom battling it out in a public vote to find the one that will have the greatest impact in the coming century. The vote is part of the Science Museum’s Initiative on Great British past and future Innovations. 

Ionic liquids are salts which can remain liquid at room temperature and do not form vapours, and so can be used as non-polluting alternatives to conventional solvents.  At QUILL, a team of nearly 100 scientists are exploring the potential of these green solvents and Fortune 100 energy giant Petronas is already using the technology in its plants.  The mercury removal unit, using 15 tons of supported ionic liquid, was developed by a team led by Professor Ken Seddon, Co-Director of QUILL at Queen’s, and Dr John Holbrey also from QUILL, who were listed last year as the number one and two chemists in the UK based on citations of their work.Professor Ken Seddon said: “Being shortlisted for the most important British innovation of the 21st century is recognition of the high calibre of research being undertaken at QUILL and throughout the University.  We would encourage people to take a moment to vote for our research as its application will eventually have a bearing on most of our lives.”

Other notable British innovations in the hunt for the prize are Quantum Dots, Graphene, Raspberry Pi and the discovery of the Higgs-Boson – you can vote for your favourite here.  Update Monday 25th March – Ionic Liquid Chemistry was voted the recent innovation that is most likely to shape the coming century.

Why not take a look at a collection of high quality research in this area from across RSC Journals – Increadible ionic liquids: an article collection.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Chemistry issue 3 now online

The latest issue of Green Chemistry is now available to read online.

Green Chemistry, issue 3, 2013, front coverThe front cover of this issue highlights a Critical Review by Tom Welton and colleagues from Imperial College London (UK) and Umeå University (Sweden) on the deconstruction of lignocellulosic biomass with ionic liquids.  The review begins by providing background information on ionic liquids and lignocellulosic biomass before going on to explore the solubility of lignocellulosic biomass in ionic liquids.  The also describes the destruction effects brought about by the use of ionic liquids as a solvent, before finally looking at the practical considerations for design of ionic liquid based deconstruction processes.

Deconstruction of lignocellulosic biomass with ionic liquids, Agnieszka Brandt, John Gräsvik, Jason P. Hallett and Tom Welton, Green Chem., 2013, 15, 550-583

The inside front cover features work by Robert Brown and Kaige Wang from Iowa State University, USA, who report the catalytic pyrolysis of microalgae for production of valuable petrochemicals and ammonia.  This promising microalgae biorefinery pathway (both from an economical and environmental point-of-view) used the HZSM-5 catalyst for pyrolysis to convert whole microalgae into aromatic hydrocarbons.  The ammonia produced in the process can be recycled as a fertilizer for microalgae cultivation.

Catalytic pyrolysis of microalgae for production of aromatics and ammonia, Kaige Wang and Robert C. Brown, Green Chem., 2013, 15, 675-681

These articles are free to access for 6 weeks!

Keep up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT articles of the week

Read some of the latest ‘HOT’ research to be published in Green Chemistry!  These articles are all free to access until the 11th March 2013:

Resolving the dilemma of gaining conductivity but losing environmental friendliness in producing polystyrene/graphene composites via optimizing the matrix-filler structure, Gucheng Long, Changyu Tang, Ka-wai Wong, Changzhen Man, Meikun Fan, Woon-ming Lau, Tao Xu and Bin Wang, Green Chem., 2013, DOI: 10.1039/C3GC37042A

Graphical Abstract for C3GC37042A


Application of a recyclable fluorous oxime in the convenient synthesis of 3-amino-1,2-benzisoxazoles and 4-amino-1H-2,3-benzoxazines, Wei Jie Ang, Chi-Yuan Chu, Tzyy-Chao Chou, Lee-Chiang Lo and Yulin Lam, Green Chem., 2013, DOI: 10.1039/C3GC36966H

Graphical abstract of C3GC36966H


Catalytic applications of a versatile magnetically separable Fe–Mo (Nanocat-Fe–Mo) nanocatalyst, Manoj B. Gawande, Paula S. Branco, Isabel D. Nogueira, C. Amjad A. Ghumman, Nenad Bundaleski, Adérito Santos, Orlando M. N. D. Teodoro and Rafael Luque, Green Chem., 2013, DOI: 10.1039/C3GC36844K

Graphical abstract for C3GC36844K


One-step acrylation of soybean oil (SO) for the preparation of SO-based macromonomers, Pei Zhang and Jinwen Zhang, Green Chem., 2013, DOI: 10.1039/C3GC36961G

Graphical abstract for C3GC36961G

Keep up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Chemistry Issue 2 now online!

Green Chemistry issue 2, 2013, is now available to read online.

Green Chemistry, issue 2, 2013 - front coverThis issue features work by Enrique Herrero Acero, Georg Guebitz and co-workers from Austria who report the replacement of heavy-metal catalysts from paints.  Alkyd resins are polyesters containing unsaturated fatty acids which are used as binding agents in paints and coatings.  The chemical drying of these resins is based on crossing-linking the unsaturated fatty acid moieties using heavy-metal catalysts.  However, these catalysts have been proven to be carcinogenic and so research has been focused on finding less toxic and environmentally friendly alternatives.  The team here have developed a laccase-mediator system which not only performs well in aqueous media, but also in solid film.

Banning toxic heavy-metal catalysts from paints: enzymatic cross-linking of alkyd resins, Katrin J. Greimel, Veronika Perz, Klaus Koren, Roland Feola, Armin Temel, Christian Sohar, Enrique Herrero Acero, Ingo Klimant and Georg M. Guebitz, Green Chem., 2013, 15, 381-388

Green Chemistry, issue 2, 2013 - inside front coverThe inside front cover features work by Michael Meier and Maulidan Firdaus who have derived renewable polyamides and polyurethanes from limonene.  Addition of cysteamine hydrochloride to (R)-(+)- and (S)-(+)-limonene presented a versatile method to produce functionalised renewable monomers for polyamide and polyurethane synthesis.  Through various combinations, fatty acid, limonene and Nylon 6,6 copolymers were prepared. Diamines derived from limonene were efficiently transformed into dicarbamates viaa phosgene-free route, and linear renewable polyurethanes, with molecular weights of up to 12.6 kDa, were obtained through an isocyanate-free route.  The structure-thermal property relationships of these compounds were also studied.

Renewable polyamides and polyurethanes derived from limonene, Maulidan Firdaus and Michael A. R. Meier, Green Chem., 2013, 15, 370-380

Read these articles for free for 6 weeks!

Keep up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Meet our Authors: Cinzia Chiappe

Photo of Cinzia ChiappeCinzia Chiappe is a Professor of Organic Chemistry at the University of Pisa, Italy.  Her research interests primarily focus on ionic liquids and their biological and physic chemical properties.  The ultimate goal of her research is to design optimised ionic liquids as solvents and/or catalysts for sustainable chemical reactions.  Cinzia took a few moments to chat to Green Chemistry

Who or what initially inspired you to become a chemist?

During my studies I was at first attracted by mathematics and biology and I thought I would become a “biologist”. Subsequently, in the last years of high school, my interest moved towards the single mechanisms that determine and govern the life on this planet. I discovered my interest for “molecules” and their interaction ability and so I decided to study chemistry. I therefore became an Organic Chemist.

What has been the motivation behind your recent research?

As an organic chemist, I studied reactivity and reaction mechanisms. At the beginning of this century (1999-2000), I discovered the fascinating world of ionic liquids and immediately I was attracted by these compounds for the copious challenges and potentialities that they offer to a researcher involved in “organic reactivity”. The subsequent step, from ionic liquids to “green chemistry”, was only a short step.

What do you see as the main challenges facing research in this area?

The main challenges are related to the possibility of resolving some strategic problems for this society, i.e. the depletion of our principal source of energy and organic compounds (fossil fuels) as well as the depletion of other important primary materials (some metals and metal salts).

Where do you see the field of green chemistry being in 5 or 10 years time?

I think that green chemistry and the application of its principles in different areas (energy, material sciences, waste disposal and so on) can become a strategic approach (probably, the only one) to overcome the problems characterizing this “small” planet with “many” inhabitants and “few” resources. Of course, small, many and few are strictly related quantities.

If you could not be a scientist, but could be anything else, what would you be?

I don’t know, but probably an “archistar” – a superstar architect.

Take a look at a few of Cinzia’s recent Green Chemistry articles below – all free to access:

A dramatic effect of the ionic liquid structure in esterification reactions in protic ionic media, Cinzia Chiappe, Sunita Rajamani and Felicia D’Andrea, Green Chem., 2013, 15, 137-143

Synthesis and properties of trialkyl(2,3-dihydroxypropyl)phosphonium salts, a new class of hydrophilic and hydrophobic glyceryl-functionalized ILs, Fabio Bellina, Cinzia Chiappe and Marco Lessi, Green Chem., 2012, 14, 148-155

Styrene oxidation by hydrogen peroxide in ionic liquids: the role of the solvent on the competition between two Pd-catalyzed processes, oxidation and dimerization, Cinzia Chiappe, Angelo Sanzone and Paul J. Dyson, Green Chem., 2011, 13, 1437-1441*

Keep up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts.

*Article free to access until the 13th February 2013.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

1st International Conference of the Cluster of Excellence “Tailor-Made Fuels from Biomass”

'Tailor-Made Fuels from Biomass' 2013 logoOn the 18th-20th June 2013, the Cluster of Excellence “Tailor-Made Fuels from Biomass (TMFB)” at RWTH Aachen University will organize it’s 6th International Workshop which for the first time will be held as an International Conference.

With this conferences, the researchers from Aachen, Germany would like to invite colleagues from all over the world for an inner- and interdisciplinary exchange on the topics addressed in the Cluster of Excellence, which incorporate the production as well as the application of modern biofuels. The creative forum that could be established with the International Workshop over the last years shall now be opened to every interested researcher and industry representative with the 1st International Conference of the Cluster of Excellence.

The following topics will be addressed in separate sessions during the conference:

  • Biomass Fractionation and Pre-treatment
  • Enzymatic and Catalytic Biomass Processing
  • Catalytic Synthesis and Conversion of Biomass-based Streams to Platform Molecules and Fuels
  • (Bio-)refinery Process Optimization
  • Injection, Ignition and Combustion of Biofuels
  • Combustion Process and Exhaust Gas After treatment Optimization of Biofuels

Call for Papers: If you would like to contribute to this conference with a presentation of your work in one of the above fields, please send in a one-page summary of your topic – click here for full details on how to submit.  The deadline for submission is the 31st January 2013.

Confirmed key-note speakers include:

Tom Welton (Imperial College London)
Philip de Goey (University of Eindhoven)
Ion Marius Sivebæk (Technical University of Denmark)
Jens Nielsen (Chalmers University of Technology)
Charles Westbrook (Lawrence Livermore National Laboratories)
Ulrich Kramer (Ford GmbH)

Visit the conference website for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Food waste biomass: a resource for high-value chemicals

Today’s society currently faces two big challenges in the form of resource depletion and waste accumulation.  The result of this is increased cost of raw resources and increasingly restrictive and expensive waste disposal.

Graphical abstract for C2GC36978HIn this perspective article, James Clark and colleagues evaluate the potential of food waste biomass as a resource for high-value chemicals.  The team begin at looking at food supply chain waste (FSCW) as a renewable resource more generally, focusing on the practicalities of using such resources and their availability.  In the latter half of the perspective, Clark looks at a biorefinery concept using citrus fruit waste and shows that this is a potentially cost-effective alternative to produce valuable chemicals. 

Clark emphasises throughout the article that it is important to go beyond first generation waste valorisation and so we must try to make use of all the valuable components of the waste.  You can see Professor Clark’s recent lecture on this topic on The Reaction website, given at the Chemistry Centre in October. 

Read the full article for free until the 4th February 2013!

Food waste biomass: a resource for high-value chemicals, Lucie A. Pfaltzgraff, Mario De bruyn, Emma C. Cooper, Vitaly Budarin and James H. Clark, Green Chem., 2013, DOI: 10.1039/C2GC36978H

Stay up-to-date with the latest news and content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Solvent for Synthesis: Conference Report 2012

2012 Green Solvents for SynthesisThe latest addition of the “Green Solvents for Synthesis” conference took place in the picturesque Rhein Valley in Boppard, Germany from October 8-10, 2012. This biennial Dechema conference brings together world renowned chemists and engineers from both academia and industry to discuss their recent developments and future insights into the field of alternative solvents, solution phase chemistry, and processes. It is always held in a unique part of Germany, in which previous conferences have been held in the lower Rhein Valley (Bruchsal), Lake Constance (Friedrichshafen) and the Bavarian Alps (Berchtesgaden), and this time in the middle Rhein Valley. The beauty of Boppard and its surrounds (including the Loreley), a UNESCO Heritage site, was an excellent backdrop for the conference and emphasized the importance of sustainable development, an underlying theme of Green Chemistry.

This year’s conference covered various topics in the field of Green Chemistry and showcased the use of green solvents and their increasing implementation, not only in academia but also in industrial applications. Click here to read more…

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Top 10 cited review articles in 2012

A green chemistry coverAs the year draws to a close, here is a list of the top 10 cited review articles in Green Chemistry in 2012 – all free to access until the end of January 2013!

Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited, Joseph J. Bozell and Gene R. Petersen, Green Chem., 2010, 12, 539-554

 Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts, Maria J. Climent, Avelino Corma and Sara Iborra, Green Chem., 2011, 13, 520-540

Catalytic conversion of biomass to biofuels, David Martin Alonso, Jesse Q. Bond and James A. Dumesic, Green Chem., 2010, 12, 1493-1513

Green chemistry by nano-catalysis, Vivek Polshettiwar and Rajender S. Varma, Green Chem., 2010, 12, 743-754

Synthesis of cyclic carbonates from epoxides and CO2, Michael North, Riccardo Pasquale and Carl Young, Green Chem., 2010, 12, 1514-1539

Searching for green solvents, Philip G. Jessop, Green Chem., 2011, 13, 1391-1398

5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications, Andreia A. Rosatella, Svilen P. Simeonov, Raquel F. M. Frade and Carlos A. M. Afonso, Green Chem., 2011, 13, 754-793

Vegetable oil-based polymeric materials: synthesis, properties, and applications, Ying Xia and Richard C. Larock, Green Chem., 2010, 12, 1893-1909

Glycerol as a sustainable solvent for green chemistry, Yanlong Gu and François Jérôme, Green Chem., 2010, 12, 1127-1138

Enzyme-mediated oxidations for the chemist, Frank Hollmann, Isabel W. C. E. Arends, Katja Buehler, Anett Schallmey and Bruno Bühler, Green Chem., 2011, 13, 226-265

Stay up-to-date with the latest news and content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Chemistry issue 1, 2013 – now online!

The first issue of Green Chemistry for 2013 is now available to read online.  Click here to read the Editorial by the Chair of the Editorial Board, Professor Walter Leitner, and Editor, Sarah Ruthven.

The front cover of this month’s issue highlights the work of Bruce Lipshutz and colleagues from the University of California, Santa Barbara, USA.  The team reported the use of a nonionic amphiphile which efficiently enabled Stille couplings in water.  TPGS-750-M is a commercially available ‘designer’ surfactant which self-assembles to form nano-micelles in water.  Within each of these micelles, several coupling reactions can take place.  This procedure, which in most cases could be performed at room temperature, could be applied to a wide variety of substrates and leads to minimal waste generation.

Stille couplings in water at room temperature, Guo-ping Lu, Chun Cai and Bruce H. Lipshutz, Green Chem., 2013, 15, 105-109

The inside front cover features the work by Robert Davis and colleagues from the University of Virginia, USA.  In this Critical Review, the team evaluate the literature surrounding the use of supported metal nanoparticle catalysts for the selective oxidation of alcohols and aldehydes.  They compare the performances of the catalysts studied in this review by categorising reaction rates based on the turnover frequency as a common, consistent denominator.   The authors also look at factors that can affect the evaluation of reaction kinetics, such as catalyst deactivation, and give suggestions regarding how to obtain the best data.

Selective oxidation of alcohols and aldehydes over supported metal nanoparticles, Sara E. Davis, Matthew S. Ide and Robert J. Davis, Green Chem., 2012, 15, 17-45.

Read both of these article for free!

Stay up-to-date with the latest news and content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)