Paper of the week: Zwitterionic poly(2-oxazoline)s for blood-contacting applications

The synthesis of highly hemo- and cytocompatible zwitterionic 2-oxazoline-based poly(sulfobetaine)s and poly(carboxybetaine)s, which demonstrate beneficial anticoagulant activity, has been reported by Schubert et al.

The polymers were obtained by thiol–ene photoaddition of a tertiary amine-containing thiol onto an alkene-containing precursor copoly(2-oxazoline), followed by betainization with 1,3-propansultone and β-propiolactone. The polymers and their intermediates were characterized by means of 1H NMR spectroscopy and size exclusion chromatography. The influence of the zwitterionic polymers on the aggregation and hemolysis of erythrocytes, the whole blood viscosity, the platelet and complement activation as well as the blood coagulation has been studied in detail. In addition, the cytotoxicity of the materials has been evaluated.

It was found that the zwitterionic POx show no negative interactions with blood. Moreover, anticoagulant activity via the intrinsic and/or the common coagulation pathway was observed. The high hemocompatibility and the low cytotoxicity as well as the beneficial anticoagulant activity of the presented zwitterionic poly(2-oxazoline)s demonstrate their potential for the use in biomedical applications.

Zwitterionic poly(2-oxazoline)s as promising candidates for blood contacting applications by Lutz Tauhardt, David Pretzel, Kristian Kempe, Michael Gottschaldt, Dirk Pohlers and  Ulrich S. Schubert Polym. Chem. 2014, 5, 5751-5764.

Remzi Becer is a web-writer and advisory board member for Polymer Chemistry. He is currently a Senior Lecturer in Materials Science and the director of the Polymer Science and Nanotechnology masters programme at Queen Mary, University of London. Visit www.becergroup.com for more information!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Author of the Month: Guocan Yu

Guocan Yu was born in Zhejiang, China in 1987. He received his BS degree in polymer materials and engineering from Hefei University of Technology in 2010. Then he joined the laboratory of Professor Feihe Huang at Zhejiang University to pursue his PhD degree in chemistry. From 2013, he was selected as a subgroup leader in Professor Huang’s group. His current research interests are focused on the construction of functional supramolecular amphiphiles, controllable self-assembly based on pillararenes, and their biologically relevant applications. Research Group Website

What was your inspiration in becoming a chemist?

When I was a middle school student, I was interested in Chemistry. I wanted to figure out the reasons behind chemical phenomena. Therefore, I chose chemistry as my major when I was in University. I like chemistry, and I can get a lot of joy from my work everyday.

What was the motivation to write your Polymer Chemistry article?

In our research group, we are interested in the fabrication of supramolecular polymers with interesting functions on the basis of host–guest recognitions. In this manuscript, we found that the linear supramolecular polymer exhibited pH- and photo- responsiveness. On the other hand, we constructed a photo-responsive supramolecular network based on the same recognition motif. We thought this manuscript was suitable for Polymer Chemistry.

Why did you choose Polymer Chemistry to publish your work? (DOI: 10.1039/C4PY01042F )

Polymer Chemistry is a high-level journal in the field of polymer science, and the papers published in this journal are always high-quality. As well, the reviewing and publishing process are very fast.

In which upcoming conferences may our readers meet you?

The 4th International Conference on Molecular Sensors and Molecular Logic Gates (MSMLG), November 9-12, 2014, Shanghai, China.

How do you spend your spare time?

In my spare time, I like reading chemical or biological literature, because I want to become a knowledgeable person like my boss. Sometimes, I play basketball with my groupmates.

Which profession would you choose if you were not a scientist?

Maybe I would be a carpenter, because my father is a carpenter.  He can make a series of nice furniture, he is my idol.


Read Guocan Yu’s latest Polymer Chemistry paper:

Construction of a pillar[5]arene-based linear supramolecular polymer and a photo-responsive supramolecular network

Jie Yang, Zhengtao Li, Yujuan Zhou and Guocan Yu

Polym. Chem., 2014, Advance Article, DOI: 10.1039/C4PY01042F



Cyrille Boyer is a guest web-writer for Polymer Chemistry. He is currently an associate professor and an ARC-Future Fellow in the School of Chemical Engineering, University of New South Wales (Australia) and deputy director of the Australian Centre for NanoMedicine.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Top 10 most-read Polymer Chemistry articles – Q2 2014

This month sees the following articles in Polymer Chemistry that are in the top 10 most accessed from April – June:

Thiol-ene “click” reactions and recent applications in polymer and materials synthesis 
Andrew B. Lowe 
Polym. Chem., 2010,1, 17-36 
DOI: 10.1039/B9PY00216B 

Polymerization-Induced Self-Assembly (PISA) – Control Over the Morphology of Nanoparticles for Drug Delivery Applications 
Bunyamin Karagoz, Lars Esser, Hien T. Duong, Johan S. Basuki, Cyrille Boyer and Thomas P. Davis 
Polym. Chem., 2014,5, 350-355 
DOI: 10.1039/C3PY01306E 

Short Peptide Based Self-Assembled Nanostructures: Implication In Drug Delivery And Tissue Engineering 
Jiban Jyoti Panda and Virander Singh Chauhan    
Polym. Chem., 2014,5, 4418-4436 
DOI: 10.1039/C4PY00173G 

Investigation into thiol-(meth)acrylate Michael addition reactions using amine and phosphine catalysts 
Guang-Zhao Li, Rajan K. Randev, Alexander H. Soeriyadi, Gregory Rees, Cyrille Boyer, Zhen Tong, Thomas P. Davis, C. Remzi Becer and David M. Haddleton 
Polym. Chem., 2010,1, 1196-1204 
DOI: 10.1039/C0PY00100G 

The Power of Light in Polymer Science: Photochemical Processes to Manipulate Polymer Formation, Structure, and Properties 
Shunsuke Chatani, Christopher J. Kloxin and Christopher N. Bowman    
Polym. Chem., 2014,5, 2187-2201 
DOI: 10.1039/C3PY01334K 

Bringing D-Limonene to the Scene of Bio-Based Thermoset Coatings via Free-Radical Thiol–Ene Chemistry: Macromonomer Synthesis, UV-Curing and Thermo–Mechanical Characterization 
Mauro Claudino, Jeanne-Marie Mathevet, Mats Jonsson and Mats Johansson    
Polym. Chem., 2014,5, 3245-3260 
DOI: 10.1039/C3PY01302B 

The quest for sustainable polyesters – insights into the future 
Carla Vilela, Andreia F. Sousa, Ana C. Fonseca, Arménio C. Serra, Jorge F. J. Coelho, Carmen S. R. Freire and Armando J. D. Silvestre    
Polym. Chem., 2014,5, 3119-3141 
DOI: 10.1039/C3PY01213A 

Phenylboronic Acid-based Glucose-responsive Polymeric Nanoparticles: Synthesis and Applications in Drug Delivery 
Rujiang Ma and Linqi Shi 
Polym. Chem., 2014,5, 1503-1518 
DOI: 10.1039/C3PY01202F 

Oxidant-induced dopamine polymerization for multifunctional coatings 
Qiang Wei, Fulong Zhang, Jie Li, Beijia Li and Changsheng Zhao 
Polym. Chem., 2010,1, 1430-1433 
DOI: 10.1039/C0PY00215A 

Benzotrithiophene and benzodithiophene-based polymers for efficient polymer solar cells with high open-circuit voltage 
Guobing Zhang, Jianyu Yuan, Peng Li, Jingxuan Ma, Hongbo Lu, Longzhen Qiu and Wanli Ma  
Polym. Chem., 2013,4, 3390-3397 
DOI: 10.1039/C3PY00251A 

Why not take a look at the articles today and blog your thoughts and comments below.

Fancy submitting an article to Polymer Chemistry? Then why not submit to us today!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the week: Photoswitchable nanocomposites

‘Cellulose nanocrystals (CNCs) have gained significant attention in the past two decades, mainly due to their high axis-modulus, reinforcing ability in various polymer matrices, vast availability in a diverse range of natural sources such as cotton, wheat straw, wood, sisal, banana stems, ramie, tunicates, bacteria and ease of isolation via acid or enzymatic hydrolysis, and ultrasonic treatment. One of the interesting features of CNCs is that the hydroxyl groups on the surface can serve as a handle to impart CNC/polymer nanocomposites with water-responsive mechanically adaptive characteristics.’

Graphical abstract: Photoswitchable nanocomposites made from coumarin-functionalized cellulose nanocrystals

Exploiting the coumarin dimerization mechanism upon UV irradiation at 365 nm, Foster and co-workers developed mechanically adaptive nanocomposites in which light can be used to change the materials properties. CNCs derived from tunicates were functionalized with 7-coumaryl-(6-isocyanatohexyl) carbamate to afford coumarin-derivatized CNCs (Cou-CNCs). Light-responsive nanocomposites were prepared by reinforcing a rubbery ethylene oxide–epichlorohydrin copolymer (EO–EPI) matrix with Cou-CNCs. The as-prepared nanocomposites show a significantly increased tensile storage modulus (E′) in comparison to the neat EO–EPI. The optically induced reaction between Cou-CNCs also reduced the swelling of the EO–EPI/Cou-CNC nanocomposites upon exposure to water as well as the extent of water-induced softening.

Photoswitchable nanocomposites made from coumarin-functionalized cellulose nanocrystals by Mahesh V. Biyani, Christoph Weder and E. Johan Foster Polym. Chem. 2014, 5, 5501-5508.

Julien Nicolas is a web-writer and advisory board member for Polymer Chemistry. He currently works at Univ. Paris-Sud (FR) as a CNRS researcher.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Poster Prize winner at RAPS 2014

Congratulations to Robert Deller, who was awarded the Polymer Chemistry prize for best poster at last week’s Recent Appointees in Polymer Science (RAPS) 2014 meeting.

Robert Deller (right) receives the Polymer Chemistry prize for best poster from RAPS committee chair Chris Holland

The winning poster, titled ‘Cryopreservation of cells using peptidomimetic macromolecules’, was based on Robert’s PhD project, which he recently completed at the University of Warwick under the supervision of Matthew Gibson, a former RAPS committee member. Robert’s research into cell cryopreservation led to publications in Biomaterials Science and Nature Communications - click on the link below to read the former:

Robert will soon be moving to the University of Bristol to take on a postdoc position in Adam Perriman’s research group.

RAPS 2014, which took place on 3rd-5th September at the University of Reading, was the 15th annual meeting organised by Recent Appointees in Polymer Science- a group set up to help polymer science researchers just starting out in their careers to forge links and networks for the future. This year’s meeting featured a diverse array of talks from early career researchers working in a variety of polymer-related fields, as well as talks from more established members of the polymer community eager to share advice and lessons learnt from their own careers.

For more information on RAPS- including how to join (for free!)- take a look at the RAPS website.

RAPS 2014
Delegates at RAPS 2014

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the week: White light emission of multi-chromophore photoluminescent nanoparticles

‘Fluorescence is a powerful tool in a variety of applications, ranging from optical to analytical materials (detection of small molecules and protein studies) because of its exquisite sensitivity, cost-effectiveness, facile operation, and superb spatial and temporal resolutions. Fluorescent organic nanoparticles derived from conjugated polymers have attracted significant interest due to their variable optical, electronic, and other properties such as facile preparation and functionalization. Among conjugated polymers used in organic nanoparticles, polyfluorene (PF) and its derivatives are considered to be of special interest because of their thermal/chemical stability, high fluorescence quantum yield and significant charge carrier mobility.’

Graphical abstract: White light emission of multi-chromophore photoluminescent nanoparticles using polyacrylate scaffold copolymers with pendent polyfluorene groups

In this work, Ling, Hogen-Esch and co-workers reported a styrene-type macromonomer containing polyfluorene pendent group (PFS), which allowed the convenient synthesis of well-defined copolymers of PFS with t-butyl acrylate by both RAFT and ATRP polymerization methods. After hydrolysis, the amphiphilic copolymers self-assembled into photoluminescent nanoparticles in aqueous solution. When doped with selected dyes, the nanoparticles emitted light with tunable colors as well as white via Förster energy transfer from the excited pendent polyfluorene groups.

White light emission of multi-chromophore photoluminescent nanoparticles using polyacrylate scaffold copolymers with pendent polyfluorene groups by Chao Deng, Peng Jiang, Xiaobin Shen, Jun Ling and Thieo E. Hogen-Esch, Polym. Chem. 2014, 5, 5109-5115.

Julien Nicolas is a web-writer and advisory board member for Polymer Chemistry. He currently works at Univ. Paris-Sud (FR) as a CNRS researcher.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Author of the Month: Dr. Marlène Lejars

Dr Marlene Lejars graduated in 2009 from the National School of Chemistry, Biology and Physics (ENSCBP) of Bordeaux, France, and received a Master degree in Chemistry (Polymers and Colloids) from Bordeaux University. She obtained her PhD degree in 2012 at the University of Toulon, France (MAPIEM laboratory, A. Margaillan and C. Bressy as supervisors), working on the synthesis of new polymer binders by the RAFT polymerization for FRC/SPC hybrid antifouling coatings. Following her PhD, she continued her research work at MAPIEM with an expertise in polymer synthesis and characterization, paint formulation, and evaluation of antifouling performances. She is involved in research projects dealing with electro-active antifouling coatings, as well as antifouling coatings for drag reduction (DRACONS project 2013-2017). She is reviewer for journals in the field of polymers including Polymer Chemistry and Journal of Applied Polymer Science. She is also involved in quality and safety management at MAPIEM laboratory.

What was your inspiration in becoming a chemist?

During high school, my Chemistry teacher put me forward to compete in a French competition, called “The Olympiads of Chemistry”. This was the opportunity for me to discover several aspects of Chemistry in more detail through theoretical courses and practical experimentation. I won the first award of the competition organized in Bordeaux. Thanks to this competition, I discovered that Chemistry was a fascinating world and I decided that I would become a chemist.


What was the motivation to write your Polymer Chemistry article?

The MAPIEM laboratory is specialized on the fouling issue especially on ships hulls, and the development of antifouling coatings. There are two main types on the market: (i) Self-Polishing Coatings (SPC) based on hydrolyzable polymers which release toxic biocides into the environment, and (ii) Fouling Release Coatings which are non-adhesive poly(dimethylsiloxane) matrix coatings with no biocide. We decided to synthesize new antifouling binders by mixing both technologies through the synthesis of copolymers based on tri-alkylsilyl methacrylates (used in SPC binders) and poly(dimethylsiloxane) (used in FRC binders). The RAFT process was used to control the architecture and molecular weights of polymers. We found that the diblock copolymers exhibited much lower surface energies than the statistical copolymers.


Why did you choose Polymer Chemistry to publish your work? (DOI: 10.1039/C3PY01603J)

Polymer Chemistry is a leading journal in the field of polymer science with high quality published papers. The reviewing and publishing process is very fast.


In which upcoming conferences may our readers meet you?

Our laboratory will organize the 18th International Congress of Marine Fouling and Corrosion (ICMCF) in Toulon, France (June 19-23, 2016).


How do you spend your spare time?

I spend my spare time doing sport such as swimming, hiking and rollerblading, but also cooking or going to the cinema. I like travelling abroad to discover new cultures, cuisines and ways of life.


Which profession would you choose if you were not a scientist?

I would probably be a primary school teacher or a pastry chef as I love to prepare cakes, especially the delicious “canelés” from Bordeaux!


Graphical abstract: Synthesis and characterization of diblock and statistical copolymers based on hydrolyzable siloxy silylester methacrylate monomersRead Dr Lejars’ latest Polymer Chemistry paper:

Synthesis and characterization of diblock and statistical copolymers based on hydrolyzable siloxy silylester methacrylate monomers
Marlène Lejars, André Margaillan and Christine Bressy
Polym. Chem., 2014,5, 2109-2117 DOI: 10.1039/C3PY01603J


Cyrille Boyer is a guest web-writer for Polymer Chemistry. He is currently an associate professor and an ARC-Future Fellow in the School of Chemical Engineering, University of New South Wales (Australia) and deputy director of the Australian Centre for NanoMedicine.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the week: Hydroxypropyl-β-cyclodextrin-grafted polyethyleneimine used as a transdermal penetration enhancer

‘The stratum corneum (SC) of skin is the main barrier against transdermal drug penetration, and poor permeability in the SC limits the usefulness of the transdermal drug administration route. Generally, drug permeation through the SC could be increased with skin permeation enhancers. Currently, enhancers most frequently used in transdermal drug delivery systems are neatly divided into three categories. One is organic solvents such as ethanol, propylene glycol and dimethyl sulfoxide. The second is surfactants such as cationic, anionic and nonionic surfactants. The last category is laurocapram and its derivative series. Nevertheless, their potential shortcomings have gradually been recognized, for their great irritation to skin or causing harm to organs. The practical use of enhancers requires the careful balancing of skin toxicity and permeation enhancement benefits’

Graphical abstract: In vitro and in vivo application of hydroxypropyl-β-cyclodextrin-grafted polyethyleneimine used as a transdermal penetration enhancer

In this work, Xing and co-workers developed a new penetration enhancer based on hydroxypropyl-β-cyclodextrin-grafted polyethyleneimine (HP-β-CD–PEI). Its penetration mechanism relied on a change of the secondary structure of keratin in the stratum corneum to enhance the transcutaneous permeation of drugs. By using a series of in vitro and in vivo methods, this cationic polymer demonstrated great biocompatibility and could be valuable for topical delivery as a penetration enhancer to improve the penetration of hydrophilic drugs.

In vitro and in vivo application of hydroxypropyl-β-cyclodextrin-grafted polyethyleneimine used as a transdermal penetration enhancer by Ke Wang, Yan Yan, Guilan Zhao, Wei Xu, Kai Dong, Cuiyu You, Lu Zhang and Jianfeng Xing, Polym. Chem. 2014, 5, 4658-4669.

Julien Nicolas is a web-writer and advisory board member for Polymer Chemistry. He currently works at Univ. Paris-Sud (FR) as a CNRS researcher.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymer Chemistry Impact Factor rises to 5.37

We are delighted to announce that, according to the latest Journal Citation Reports®, Polymer Chemistry’s Impact Factor* has increased to 5.368.

This is a great indication of the continued strength of Polymer Chemistry as it approaches its 5th anniversary, and we would like to take this opportunity to thank all our readers, authors, referees and board members for their support and engagement with the journal.

Even better news, the journal’s Immediacy Index# has risen to an impressive 1.713, the highest of all primary research journals in the Polymer Science category by some way.

Polymer Chemistry 2013 Immediacy Index

Immediacy Index is a measure of how quickly after publication articles in a journal are cited.  Polymer Chemistry’s high number indicates that articles are being cited very quickly, and is testament to the high visibilty and relevance of the articles we publish to the polymer community.

So, to make sure your next polymer synthesis paper is seen and cited by fellow polymer chemists, we recommend submitting it to Polymer Chemistry!


Polymer Chemistry wasn’t the only Royal Society of Chemistry journal to see an increase in its Impact Factor this year.  Find a full list of our journals and their 2013 Impact Factors in this blog post.

*The Impact Factor provides an indication of the average number of citations per paper. Produced annually, Impact Factors are calculated by dividing the number of citations in a year by the number of citeable articles published in the preceding two years.

#Immediacy Index is the average number of citations in a given year to papers published in that year.

Data based on 2013 Journal Citation Reports®, (Thomson Reuters, 2014).

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the week: Hybrid organic–inorganic copolymers with self-healing properties

‘Over the last decade, a broad range of self-healing materials has emerged. Such systems, when they have been damaged, heal themselves either spontaneously or with the aid of a stimulus. Several of these materials draw their inspiration from the design of biological materials. On the other hand, hybrid materials or nanocomposites, defined as composites constituted of two components, one inorganic and the other one organic in nature mixed at the nanometer level, have attracted strong interest both in academia and industry. The combination at the nanoscale of organic and inorganic components leads to highly homogeneous materials, which develop extended organic–inorganic interfaces with tuneable chemical organic–inorganic bonds from weak to strong interactions.’

Graphical abstract: Nano-building block based-hybrid organic–inorganic copolymers with self-healing properties

In this work, Rozes and co-workers prepared new dynamic materials, that can repair themselves after strong damage, by hybridization of polymers with structurally well-defined nanobuilding units. The controlled design of cross-linked poly(n-butyl acrylate) (PnBA) has been performed by introducing a very low amount of a specific tin oxo-cluster. Sacrificial domains with non-covalent interactions (i.e. ionic bonds) developed at the hybrid interface play a double role. Such interactions are strong enough to cross-link the polymer, which consequently exhibits rubber-like elasticity behavior, and labile enough to enable, after severe mechanical damage, dynamic bond recombination leading to an efficient healing process at room temperature. In agreement with the nature of the reversible links at the hybrid interface, the healing process can speed up considerably with temperature .

Nano-building block based-hybrid organic–inorganic copolymers with self-healing properties by F. Potier, A. Guinault, S. Delalande, C. Sanchez, F. Ribot and L. Rozes, Polym. Chem. 2014, 5, 4474-4479.

Julien Nicolas is a web-writer and advisory board member for Polymer Chemistry. He currently works at Univ. Paris-Sud (FR) as a CNRS researcher.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)