Author of the Month: Dr. Patrick Lacroix-Desmazes

Dr. Patrick Lacroix-Desmazes graduated in 1992 from the National School of Chemistry of Montpellier, France, and received a Master degree in Polymer Science from the University of Montpellier. He obtained his PhD degree in 1996 from the University Claude-Bernard Lyon I, under the supervision of Professor Alain Guyot in collaboration with Elf Atochem and in the frame of a European program on reactive surfactants, on the use of macromonomers as stabilizers in dispersion polymerization in polar media. After a postdoctoral research in 1997 on suspension polymerization with inorganic stabilizers at BP Chemicals in Wingles, he joined CNRS as a junior scientist working with Professor Bernard Boutevin. In 1999, he developed RITP, a promising method for controlled/living radical polymerization. He received his Habilitation Degree in 2004. He was awarded the 2004 Innovative Research ADER Award (Association for the development of Education and Research) in collaboration with Solvay. In 2009, he was distinguished as a researcher laureate from Languedoc-Roussillon and the same year he was promoted CNRS research director. Currently, he is the head of the team Engineering Macromolecular Architectures (IAM) at the Institute Charles Gerhardt in Montpellier. He is deputy president of the French Polymer Group association (GFP) and active member of the French Chemical Society (SCF). His research interests cover the mechanisms and kinetics of controlled radical polymerizations (photoiniferters, NMP, ATRP, RAFT, ITP, RITP), including in dispersed media (emulsion, dispersion, suspension polymerization), the self-assembly of polymers, the bottom-up elaboration of hybrid materials as well as the synthesis and use of polymers in liquid or supercritical carbon dioxide for the development of clean processes in unconventional media.

Link to my research group’s website: http://iam.icgm.fr/

What was your inspiration in becoming a chemist?

When I was very young, my first wish was to become a novelist. Then, during my studies I became more and more interested by sciences and my dream was to become aerospace engineer or something related to the exploration of universe! But I was not brilliant enough in math to reach this goal. And, as I also appreciated chemistry and all the mystery about it from alchemy to modern chemistry, I found that becoming chemist could be a good way to satisfy my thirst for creation. Researcher in chemistry is a great job: I like it not only on a scientific point of view but also because it is an excellent way to make new friends all over the world and share our cultures.

What was the motivation to write your Polymer Chemistry article?

We have been working on double hydrophilic block copolymers (DHBC) since a few years and with some colleagues of our institute we have shown that such copolymers could be nicely used as structure-directing agents in the elaboration of hybrid mesoporous silica materials (paper here). In the present article, we wanted to detail the synthesis of such copolymers and to show how a platform of DHBC with different characteristics (cationic, anionic, pH- or T-stimuli responsive) could be efficiently produced. Many papers appear in the literature on this topic but quite few are giving and discussing the very details that make the synthesis more or less challenging, so we tried to emphasize on such details.

Why did you choose Polymer Chemistry to publish your work?

Polymer Chemistry is a journal with a good audience and fast dissemination and the reviewing process is usually constructive. For this article, we really took our time to fully answer the comments of the referees. This journal is a leading one in chemistry and the editorial and production team is well organized.

In which upcoming conferences may our readers meet you?

My next conference will probably be the 3rd International Symposium on Green Chemistry to be held in La Rochelle on May 3-7 2015. I will present our latest results on polymer-assisted clean processes in supercritical carbon dioxide.

How do you spend your spare times?

I like hiking in general and in the mountains when I have enough time, contemplating nature, far from the rushing modern life. I also enjoy swimming, running and biking with my 14 and 16 years old girls. I love travelling and discovering new countries and share other cultures with my family.

Which profession would you choose if you were not a scientist?

I think I would create a new type of job: itinerant teacher. Instead of the students coming to the teacher, the teacher would visit the students worldwide to share the knowledge and cultures.


Asymmetric neutral, cationic and anionic PEO-based double-hydrophilic block copolymers (DHBCs): synthesis and reversible micellization triggered by temperature or pH

Maël Bathfield,   Jérôme Warnant,   Corine Gérardin and  Patrick Lacroix-Desmazes

The syntheses of three poly(ethylene oxide)-based (PEO) double-hydrophilic block copolymers (DHBCs) of different second block nature (thermosensitive poly(N-isopropylacrylamide) (PNIPAM) block, anionic poly(vinylbenzyl phosphonic di-acid) block, and cationic poly(vinylbenzyl triethyl ammonium chloride) block) are described. The synthesis strategy depends on the synthesis of a single 5kD-PEO-based macro-chain transfer agent that is able to control the RAFT polymerizations of various functional monomers. Low molecular weights of the second block were targeted to obtain asymmetric structures for the DHBCs. Their ability to form micelles under appropriate conditions (specified temperature, pH and nature of the auxiliary of micellization) and the reversibility of the micellization process were checked. Finally, a nanostructured hybrid silica material was obtained using the PNIPAM-based copolymer as a structure-directing agent (SDA), which yielded well-organized mesoporous silica after template removal.


Cyrille Boyer is a guest web-writer for Polymer Chemistry. He is currently an associate professor and an ARC-Future Fellow in the School of Chemical Engineering, University of New South Wales (Australia) and deputy director of the Australian Centre for NanoMedicine.


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Introducing our newest Advisory Board member: Priyadarsi De

We are delighted to announce that Dr Priyadarsi De (Indian Institute of Science Education and Research Kolkata, India) has joined the Advisory Board of Polymer Chemistry.

Dr. Priyadarsi De is currently Associate Professor in the Department of Chemical Sciences in the Indian Institute of Science Education and Research Kolkata (IISER-K). He has held positions at University of Massachusetts Lowell, USA, where he worked as a post-doctoral fellow in the group of Professor Rudolf Faust, and in Southern Methodist University (Dallas, USA) with Professor Brent Sumerlin. He has also spent time in industry, as a Distinguished Scientist at PhaseRx Pharmaceuticals, Seattle, USA.

His research interests include RAFT polymerization of amino acid and fatty acid based monomers, polymeric-inorganic hybrid nanomaterials, polymeric polyelectrolytes, cross-linked polymeric hydrogels and organogels, and weak-link polymers such as polyperoxides and polysulfides.

See some of Priyadarsi’s recent Polymer Chemistry papers:

Polymerization-induced self-assembly driving chiral nanostructured materials
Kamal Bauri, Amal Narayanan, Ujjal Haldar and Priyadarsi De
Polym. Chem., 2015,6, 6152-6162

POSS-induced enhancement of mechanical strength in RAFT-made thermoresponsive hydrogels
Ujjal Haldar, Mridula Nandi, Binoy Maiti and Priyadarsi De
Polym. Chem., 2015,6, 5077-5085

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Efficiency assessment of single unit monomer insertion reactions for monomer sequence control: kinetic simulations and experimental observations

Haven et al. describe the efficiency of single monomer insertion via both kinetic simulations and experimental observations.

So-called sequence controlled materials have recently received considerable interest due to the precise and freely selectable order of monomers in a monodisperse chain. Such materials exhibit the precision of the peptides in all aspects and differentiate this approach from the synthesis of multiblock copolymers, where a significant dispersity (albeit <1.10 in many occasions) is displayed. Herein, Junkers and co-workers provide an in depth elucidation of the crucial factors that should be taken into account when performing single unit monomer insertion (SUMI) reactions. Both modelling and experimental data confirm that isolated yields of each insertion are comparatively low when going beyond the third monomer addition and as such, even lower yields must be expected for further monomer insertions. Kinetic simulations have shown that most reaction conditions play only a minor role for the success of the insertions and thus, a wide range of conditions can be applied for the synthesis of such materials. Moreover, the effect of the chain-length dependency on the SUMI reactions has also been critically evaluated. Importantly, the carefully optimized conditions obtained from microreactor experiments and kinetic modelling has been subsequently applied to upscale the SUMI reactions in a mesoflow reactor. Although the facile access to such materials demonstrates the pathway towards future developments in the synthesis of longer sequence controlled oligomers, the challenge remains whether oligomers with chain length above 5 will also be available

Tips/comments directly from the authors:

  1. For Single Unit Monomer Insertion reactions (SUMIs), product yield optimization is by stopping the reaction after exactly one monomer equivalent consumption. The reaction rate, thus radical initiator concentration, temperature and overall monomer conversions play a minor role; SUMIs can thus be performed within few minutes.
  2. To study the yield of a SUMI reaction, one needs to distinguish isolated yield from the yield in the crude product mixture. Practically, isolated yields are very dependent on the efficiency of the product isolation method. Yields from the crude can be obtained by careful calibration of mass spectra intensities.
  3. As long as monomers with more or less equal reactivities are chosen, a yield of ~50% is the theoretical maximum.
  4. Evaluation of experimental yields under optimized conditions show that the yield decreases with increasing length of the sequence-defined oligomers. This effect is attributed to a strong chain-length dependency of the monomer propagation rate coefficients.
  5. For upscaling of SUMI reactions, micro- and mesoflow reactors offer the perfect solution.

Efficiency assessment of single unit monomer insertion reactions for monomer sequence control: kinetic simulations and experimental observations, by J.J. Haven, J. Vandenbergh, R. Kurita, J. Gruber and T. Junkers, Polym. Chem., 2015, 6, 5752-5765.


Dr. Athina Anastasaki is a Web Writer for Polymer Chemistry. She is currently a Warwick (UK)/ Monash (Australia) research fellow working under the Monash Alliance. Visit http://haddleton.org/group-members for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Author of the Month: Dr. Damien Quemener

Dr. Damien Quemener gained his Pd.D in 2005 in the “Laboratoire de Chimie des Polymères Organiques” at Bordeaux University (France), and was a postdoctoral fellow at the University of New South Wales (Center for Advanced Macromolecular Design) in Sydney, Australia until 2006. He joined Montpellier University in 2007 as an Associate Professor, working at the “Institut Europeen des Membranes” in Montpellier, France. He works at the interface between chemistry and physical chemistry of polymers and membranes with the goal of preparing new autonomous and dynamic porous materials.

What was your inspiration in becoming a chemist?

When I was at junior high school, I gained work experience in a medical laboratory, where I undertook simple and automatic analyses. I was fascinated by the fact that a simple colour change could give you very important results in the quest of a medical diagnostic. But right after I was also frustrated that I didn’t understand the theory beyond that so I decided to study chemistry not to change the world but to simply have a better understanding of it.

What was the motivation to write your Polymer Chemistry article?

Filtration membranes are now everywhere and are recognised as a key technology, for example in water purification. Classical membranes are designed to be highly stable towards mechanical and chemical stresses. We decided to take the opposite strategy in saying that a membrane should be unstable but controlled, in order to make it possible to adapt to any environmental changes. Therefore we have prepared a membrane from block copolymer micelles responsive to water pressure, pH or UV radiation.

Why did you choose Polymer Chemistry to publish your work?

Well, Polymer Chemistry is quite a new and very dynamic journal having a strong impact in the polymer community, and also because it’s a very quick way to publish hot results since the time to publication is short.

In which upcoming conferences may our readers meet you?

This year, I might attend Euromembrane 2015 on the 6-10. September 2015 in Germany but my plans are not yet finalised.

How do you spend your spare time?

Apart from my work, I love to spend my free time with my family since my two boys keep me connected to the day to day reality. I’m also a runner and I’m trying to run two marathons every year, my most recent one was Paris in April.

Which profession would you choose if you were not a scientist?

I would definitely be an architect and build modern style houses since I love to see how something drawn on a piece of paper can be transferred to life-size scale. That’s a common occurrence in the role of a researcher to.


Stimuli responsive nanostructured porous network from triblock copolymer self-assemblies

Zineb Mouline, Mona Semsarilar, Andre Deratani and Damien Quemener

An ABA triblock amphiphilic copolymer is synthesized using RAFT chemistry. The self-assembled micelles of this copolymer are then used to prepare nano-organized porous films that could be used as filtration membranes. In this work a novel strategy is developed to build the nanostructures and perform their self-assembly using reversible and non-covalent interactions to create free volume between the micelles, thus giving tuneable porosity to the film. The self-assembly of poly(styrene)-b-poly(phenylboronic acid)-b-poly(styrene) block copolymer, occurs at high concentration through solvent evaporation, which induces a progressive decrease of the inter-micellar distance, and results in the formation of an in situ network of micelles and the final porous film. Subsequent permeability tests were conducted under different stimuli (pH and UV), generating cross-linking and chemical exchange reactions, to ensure the best balance between permeability and mechanical strength. This work highlights an original strategy for pore size control, and provides new insights towards the design of stimuli-responsive materials.


Cyrille Boyer is a guest web-writer for Polymer Chemistry. He is currently an Associate Professor and an ARC-Future Fellow in the School of Chemical Engineering, University of New South Wales (Australia) and Deputy Director of the Australian Centre for NanoMedicine.


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: From drug to adhesive: a new application of poly(dihydropyrimidin-2(1H)-one)s via the Biginelli polycondensation

Zhao et al. describe the potential of the Biginelli polycondensation to improve metal bonding strength.


Recently, the introduction of efficient reactions (e.g. click reactions, Diels-Alder reactions) to polymer chemistry aiming to synthesize new condensation polymers with improved properties and characteristics has attracted considerable interest. However, on many occasions, the requirement of extensive synthetic steps (e.g. for monomer synthesis) in combination with the usage of unsafe reagents (e.g. toxic, explosive etc.) necessitates the need for the development of alternative strategies that will provide access to large scale functional materials. Towards this goal Tao and co-workers employed the Biginelli polycondensation reaction to polymerize a novel difunctional monomer consisting of benzaldehyde and beta-keto ester groups, to yield poly(dihydropyrimidin-2(1H)-one)s (poly(DHMPs) (Mn ~ 22000 g mol-1) within 1 h. Interestingly and in contrast with the small molecular DHMPs, the Biginelli polycondensates presented metal bonding capability and adhesive properties (up to ~ 2.8 Mpa). In addition, when monomers containing more functional groups were employed, stronger tensile shear strength was demonstrated indicating that the cross-linked polymer network has a positive effect on the bonding strength (3.9-5.9 Mpa). Finally, the efficiency of the reaction was further demonstrated by performing the reaction using an electric heat gun. The preparation of the monomers on a large scale, the facile nature of the polymerisation and the excellent metal bonding performance paves the way for the synthesis of new functional polymers.

Tips/comments directly from the authors:

1.  When finishing the polycondensation of monomer AB, the final polymer should be precipitated into cold water immediately, because the viscosity of they system will increase after cooling down (solid can even be formed), which will make the purification challenging.

2.  When precipitating the polymer, adding some base (e.g. NaOH) in water is helpful for the removal of the acetic acid. In addition, strong stirring during the precipitation is necessary to achieve satisfactory purification.

3.  During the metal bonding test, evenly heating could improve the efficiency of bonding. An open system for the volatilization of water will also enhance the glue effect.

4.  As the monomer A2B2 is viscous, gentle heating prior to use is helpful for measuring.

From drug to adhesive: a new application of poly(dihydropyrimidin-2(1H)-one)s via the Biginelli polycondensation, by Y. Zhao, Y. Yu, Y. Zhang, X. Wang, B. Yang, Y. Zhang, Q. Zhang, C. Fu, Y. Wei and L. Tao, Polym. Chem., 2015, 6, 4940-4945.


Dr. Athina Anastasaki is a Web Writer for Polymer Chemistry. She is currently a Warwick (UK)/ Monash (Australia) research fellow working under the Monash Alliance. Visit http://haddleton.org/group-members for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Top 10 most-read Polymer Chemistry articles – Q2 2015

This month sees the following articles in Polymer Chemistry that are in the top 10 most accessed from April – June:

Thiol-ene “click” reactions and recent applications in polymer and materials synthesis 
Andrew B. Lowe 
Polym. Chem., 2010,1, 17-36
DOI: 10.1039/B9PY00216B

Thiol–ene “click” reactions and recent applications in polymer and materials synthesis: a first update 
Andrew B. Lowe 
Polym. Chem., 2014,5, 4820-4870
DOI: 10.1039/C4PY00339J

Self-assembly of cyclic polymers 
Rebecca J. Williams, Andrew P. Dove and Rachel K. O’Reilly    
Polym. Chem., 2015,6, 2998-3008
DOI: 10.1039/C5PY00081E

Hollow double-layered polymer microspheres with pH and thermo-responsive properties as nitric oxide-releasing reservoirs 
Tuanwei Liu, Wei Zhang, Tao Song, Xinlin Yang and Chenxi Li  
Polym. Chem., 2015,6, 3305-3314
DOI: 10.1039/C5PY00001G

Investigation into thiol-(meth)acrylate Michael addition reactions using amine and phosphine catalysts 
Guang-Zhao Li, Rajan K. Randev, Alexander H. Soeriyadi, Gregory Rees, Cyrille Boyer, Zhen Tong, Thomas P. Davis, C. Remzi Becer and David M. Haddleton    
Polym. Chem., 2010,1, 1196-1204
DOI: 10.1039/C0PY00100G

Oxidant-induced dopamine polymerization for multifunctional coatings 
Qiang Wei, Fulong Zhang, Jie Li, Beijia Li and Changsheng Zhao    
Polym. Chem., 2010,1, 1430-1433
DOI: 10.1039/C0PY00215A

Thermoresponsive polyelectrolytes derived from ionic liquids 
Yuki Kohno, Shohei Saita, Yongjun Men, Jiayin Yuan and Hiroyuki Ohno    
Polym. Chem., 2015,6, 2163-2178
DOI: 10.1039/C4PY01665C

A simple approach to preparation of polyhedral oligomeric silsesquioxane crosslinked poly(styrene-<it>b</it>-butadiene-<it>b</it>-styrene) elastomers with a unique micro-morphology <it>via</it> UV-induced thiol–ene reaction 
Jing Bai, Zixing Shi, Jie Yin and Ming Tian    
Polym. Chem., 2014,5, 6761-6769
DOI: 10.1039/C4PY00780H

Bringing d-limonene to the scene of bio-based thermoset coatings via free-radical thiol–ene chemistry: macromonomer synthesis, UV-curing and thermo-mechanical characterization 
Mauro Claudino, Jeanne-Marie Mathevet, Mats Jonsson and Mats Johansson    
Polym. Chem., 2014,5, 3245-3260
DOI: 10.1039/C3PY01302B

Thiol–maleimide “click” chemistry: evaluating the influence of solvent, initiator, and thiol on the reaction mechanism, kinetics, and selectivity 
Brian H. Northrop, Stephen H. Frayne and Umesh Choudhary    
Polym. Chem., 2015,6, 3415-3430 
DOI: 10.1039/C5PY00168D

Why not take a look at the articles today and blog your thoughts and comments below.

Fancy submitting an article to Polymer Chemistry? Then why not submit to us today!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Editorial Board’s Top Picks: Wei You

Wei You is an Associate Editor for Polymer Chemistry and an Associate Professor in the Department of Chemistry, University of North Carolina Chapel Hill, USA. His research focuses on the synthesis and characterization of novel multifunctional materials for a variety of applications, predominately in electronics and photonics. Wei’s group uses an interdisciplinary approach, interfacing chemistry, physics, materials science and engineering.

You can find all Editorial Board’s Top Picks papers in our web collection


Focus on Conjugated Polymers (Associate Editor: Prof. Wei You, UNC Chapel Hill, USA)


Conjugated polymers, due to their interesting optical and electrochemical properties, have found many applications, from solar cells, to light-emitting diodes, transistors, and sensors, to name a few. Design and synthesis of novel conjugated polymers have been a very research-active area, illustrated by the fact that Polymer Chemistry has published more than 450 contributions in the past five years (~10% of the total number of publications).

In my Editorial Board’s Top Picks, I highlight four papers, and two review articles:

1. Benzodifuran-alt-thienothiophene based low band gap copolymers: substituent effects on their molecular energy levels and photovoltaic propertiesLijun Huo, Zhaojun Li, Xia Guo, Yue Wu, Maojie Zhang, Long Ye, Shaoqing Zhang and Jianhui Hou
Polym. Chem., 2013,4, 3047-3056

Conjugated polymers for solar cells is one of hottest research areas in the past decade. Hou’s group took the conjugated backbone of benzodifuran-alt-thieno[3,4-b]thiophene (BDF-alt-TT) to carry out a comprehensive study on the impact of electron-withdrawing group on the optical and electrochemical properties of the parent polymer. It is an elegant study that covers design and synthesis, physical properties, computational modeling, and photovoltaic device characteristics. Such a comprehensive study of structure-property relationship is very impressive and useful to the field of conjugated polymer for solar cells.

2. Synthesis of donor–acceptor conjugated polymers based on benzo[1,2-b:4,5-b′]dithiophene and 2,1,3-benzothiadiazole via direct arylation polycondensation: towards efficient C–H activation in nonpolar solvents
Xiaochen Wang and Mingfeng Wang
Polym. Chem., 2014,5, 5784-5792

Though most conjugated polymers are made through Stille, Suzuki type polycondensations, recently, direct-arylation cross-coupling has emerged as an economically efficient and environment-friendly approach. Wang’s group focused on a particular polymer, PBDTBT, consists of alternating benzo[1,2-b:4,5-b0]dithiophene (BDT) as an electron donor (D) and 2,1,3-benzothiadiazole (BT) as the electron acceptor (A). What is really impressive is that they systematically investigated almost all reaction factors including catalysts, solvents, ligands, bases, additives, concentration of reactants and phase transfer agents. The great efforts had a good payoff: their optimized condition was able to achieve a weight averagemolecular weight (Mw) as high as 60 kg/mol in nearly quantitative yield and excellent C–H selectivity.

3. Optical and electrical properties of dithienothiophene based conjugated polymers: medium donor vs. weak, medium, and strong acceptors
Bijitha Balan, Chakkooth Vijayakumar, Akinori Saeki, Yoshiko Koizumi, Masashi Tsuji and Shu Seki
Polym. Chem., 2013,4, 2293-2303

Donor-acceptor to create conjugated polymers is the most popular approach to control the band gap and energy level of conjugated polymers. The Seki group conducted an interesting study to investigate the strength of acceptor (weak, medium and strong) with a fixed donor, dithienothiophene in deciding optical and electrochemical properties of the resulting polymers. Furthermore, they did the computational modeling and device mobilities with different methods. An elegant work with thorough synthetic details and comprehensive study.

4. Low band-gap benzothiadiazole conjugated microporous polymers
Shijie Ren, Robert Dawson, Dave J. Adams and Andrew I. Cooper
Polym. Chem., 2013,4, 5585-5590

Conjugated microporous polymers (CMPs), combining microporosity, high surface areas with extended conjugation, can find a range of potential applications, including light-harvesting and sensing. The Cooper group created a low band gap CMP by incorporating the popular benzothiadiazole unit, via transition metal catalyzed cross-coupling polycondensation. Most interestingly, the fluorescence of one of the polymers was quenched by the inclusion of C60 in the pores, demonstrating the potential applications of such materials in efficient light harvesting or energy conversion.

Review articles:

1. Controlled polymerizations for the synthesis of semiconducting conjugated polymers
Ken Okamoto and Christine K. Luscombe
Polym. Chem., 2011,2, 2424-2434

Conjugated polymers synthesize by chain-growth mechanism (directly or indirectly), though much less explored when compared with the more popular step-growth mechanism, offer a number of unique advantages, including controlled molecular weight, low dispersity, and ease of preparing block copolymers. This review by the Luscombe group provided a rather comprehensive review (up to 2011) on this topic, covering various controlled polymerization methods to synthesize conjugated polymers, including living anion polymerization, ring-opening metathesis polymerization and chain-growth condensation polymerization.

2. Well-defined two dimensional covalent organic polymers: rational design, controlled syntheses, and potential applications
Zhonghua Xiang, Dapeng Cao and Liming Dai
Polym. Chem., 2015,6, 1896-1911

Two-dimensional (2D) covalent organic polymers (COPs) and derivatives are an emerging category of conjugated polymers, which hold great potential for a large variety of applications, including gas storage, energy conversion and storage, and sensing. The Dai group reviewed the recent progress in this exciting field of research, covering the rational design, controlled syntheses and potential applications of 2D COPs with various well-defined structures and properties. An up-to-date review on this topic with many beautiful structures.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Preparation of complex multiblock copolymers via aqueous RAFT polymerization at room temperature

Martin et al. describe the synthesis of multiblock copolymers via RAFT polymerization at room temperature.


The preparation of high-order multiblock copolymers in a one pot process using reversible addition-fragmentation chain transfer (RAFT) is highly attractive due to the rapid polymerization rates, the achievement of quantitative conversions for each block, the lack of purification steps between the intermediate monomer additions (time effective and resource effective) and the narrow molecular weight distributions that can be attained. The “secret” of this success is the choice of high kp acrylamide monomers and water as the reaction solvent allowing for full monomer conversion to be obtained whilst employing very low amounts of free radical initiator. However, applying this polymerization methodology to lower kp monomers, such as methacrylates and acrylates, can be problematic as a higher concentration of initiator will be required to “push” the reaction towards completion and side reactions are also likely to occur at elevated temperatures, typically employed for this polymerization protocol. High temperatures are also disadvantageous for the polymerization of monomers that possess an LSCT upon polymerization (e.g. N-isopropyl acrylamide (NIPAM)).

In this work, a new approach to prepare multiblock copolymers via room temperature aqueous RAFT is presented. The authors implement the suitable redox couple tert-butyl hydroperoxide/ascorbic acid (TBHP/AsAc) to polymerize both acrylate and acrylamide multiblock copolymers with low dispersity values and high end-group fidelity exemplified by several in situ chain extensions. The challenge of working with slightly lower kp monomers is also highlighted as both low and high molecular weight tailing is evident for the acrylate multiblocks whilst only gradual broadening and no shoulders are observed for the acrylamide analogues. A multiblock that consists of both acrylamide and acrylate monomers has also been targeted, demonstrating the versatility of the approach to obtain more complex multiblock structures. The main advantage of this work is the possibility of incorporating thermoresponsive blocks (e.g. NIPAM and diethyl acrylamide (DEA)) in the multiblock composition and limiting side reactions, often occurring at higher temperatures. Another interesting feature of this paper is the ability to control the polymerization of more hydrophobic (and not water soluble) monomers (e.g. methyl acrylate and ethylene glycol methyl ether acrylate) which were also successfully included in the multiblock sequence with a high degree of control. In contrast with multiblock copolymers obtained via single electron transfer living radical polymerization (SET-LRP) or atom transfer living radical polymerization (ATRP) methods, RAFT offers the additional advantage of allowing the incorporation of acidic monomers in the multiblock composition. The next challenge to tackle is to polymerize even lower kp monomers (such as methacrylates) with a similar level of control.

Tips/comments directly from the authors:

1) When working at room temperature the viscosity is high. To avoid a loss of MW control after few block extension, a strong stirring for a good homogenization of the polymerization mixture is necessary.

2) The mixing of acrylate and acrylamide blocks is rather difficult because of the difference in reactivity of each family of monomers. Normally poly(acrylates) are better reinitiating group than poly(acrylamides) and therefore should be polymerized first.

3) In the redox initiator couple tert-butyl hydroperoxide/ascorbic acid (TBHP/AsAc), we found that a lot less AsAc could be used than that reported, and yet still give efficient initiation. In fact we observed that AsAc could act as an inhibitor of the radical polymerization. We are currently investigating the optimal ratio of the reducing and oxidizing agents.

4) The water soluble hydroxyethylacrylate monomer needs to be carefully purified because of diacrylate contamination, which is responsible for the shoulder observed at high MW on SEC analyses.

Preparation of complex multiblock copolymers via aqueous RAFT polymerization at room temperature, by L. Martin, G. Gody and S. Perrier, Polym. Chem., 2015, 6, 4875-4886


Dr. Athina Anastasaki is a Web Writer for Polymer Chemistry. She is currently a Warwick (UK)/ Monash (Australia) research fellow working under the Monash Alliance. Visit http://haddleton.org/group-members for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

The Editorial Board pick their favourite Polymer Chemistry articles

Polymer Chemistry is dedicated to publishing the most exciting research encompassing all aspects of synthetic and biological macromolecules, and related emerging areas. As well as a dedicated readership, our Editorial Board members are also passionate consumers of journal content. We felt, therefore, that it might be useful for our Editorial Board to direct readers towards the papers published in the journal they find most exciting, based on their personal interests.

In our new “Editorial Board’s Top Picks” section of the journal blog, Editorial Board members will, in turn, highlight their favourite papers.

Accompanying the blog posts, is a web collection of the selected Polymer Chemistry articles.

Each month a different member of the Editorial Board will be picking their top articles, so be sure to keep checking the website for the latest additions!

Let us know which Polymer Chemistry articles are your favourite by joining the conversation on Twitter @PolymChem.

The first installment of Editor’s pick comes from Editorial Board member Heather Maynard:


Heather Maynard is a member of the Polymer Chemistry Editorial Board and a Professor in the Department of Chemistry & Biochemistry, UCLA, USA. Heather’s research lies at the frontiers of chemistry, biomaterials, and nanotechnology and involves a combination of organic and polymer synthesis, materials characterization, and biomedical research.


Heather has selected these Polymer Chemistry articles from 2015:

Dual side chain control in the synthesis of novel sequence-defined oligomers through the Ugi four-component reaction
Susanne C. Solleder, Katharina S. Wetzel and Michael A. R. Meier
Polym. Chem., 2015,6, 3201-3204

Degradable cross-linked polymer vesicles for the efficient delivery of platinum drugs
Q. Fu, J. Xu, K. Ladewig, T. M. A. Henderson and G. G. Qiao
Polym. Chem., 2015,6, 35-43

The power of one-pot: a hexa-component system containing π–π stacking, Ugi reaction and RAFT polymerization for simple polymer conjugation on carbon nanotubes
Bin Yang, Yuan Zhao, Xu Ren, Xiaoyong Zhang, Changkui Fu, Yaling Zhang, Yen Wei and Lei Tao
Polym. Chem., 2015,6, 509-513
This article was also highlighted on the Polymer Chemistry blog as Remzi Becer’s Paper of the Week.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymer Chemistry welcomes new Associate Editor Emily Pentzer

We are delighted to welcome our newest Polymer Chemistry Associate Editor: Emily Pentzer (Case Western Reserve University, USA).

Emily will start her role as Associate Editor on 1 July 2015.

Emily Pentzer Polymer Chemistry

Emily obtained a Bachelor of Science in Chemistry from Butler University, USA in 2005. She then moved to Northwestern University, USA where she completed her PhD in 2010 under the supervision of Professor SonBinh T. Nguyen working on the development of new monomers for ring-opening metathesis polymerisation. Between 2010 and 2013 she was a postdoctoral researcher at the University of Massachusetts Amherst, USA where she investigated the synthesis and assembly of n-type and p-type materials for organic photovoltaic applications, supervised by Professor Todd Emrick in the Department of Polymer Science and Engineering. Since July 2013, Emily has been at Case Western Reserve University, USA as an Assistant Professor of Chemistry. Her research addresses application-based materials problems in the areas of energy harvesting, management, and storage. She uses synthetic chemistry to tailor molecular design and control self-assembly for the preparation and study of novel conductive materials with controlled domain sizes and interfaces.

To find out more about Emily’s research take a look at her group’s website.

As a Polymer Chemistry Associate Editor, Emily will be handling submissions to the journal. Why not submit your next paper to her Editorial Office?

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)