Reviews in Green Chemistry – a cross journal collection

Image courtesy of Shutterstock

 The development of green and sustainable chemistry is one of the most topical issues of today and is relevant across all areas of chemistry in academia and industry.   

Chemical Society Reviews (Chem Soc Rev), Green Chemistry and Energy & Environmental Science (EES) are delighted to present a combined collection of high quality reviews covering a broad range of topics from this field.  The collection includes reviews currently featured in Chem Soc Rev’s Green Chemistry themed issue (online now), as well as a selection of cutting edge reviews published in Green Chemistry and EES last year.   

All these articles are free to access for a limited time only, so make the most of this opportunity and take a look…  

Fundamentals of green chemistry: efficiency in reaction design, Roger Sheldon, Chem. Soc. Rev., 2012, 41, 1437.  

Evaluating the “Greenness” of chemical processes and products in the pharmaceutical industry—a green metrics primer, Concepción Jiménez-González et al., Chem. Soc. Rev., 2012, 41, 1485.  

Searching for green solvents, Philip, G. Jessop, Green Chem., 2011, 13, 1391.  

Derivation and synthesis of renewable surfactants, Evan S. Beach et al., Chem. Soc. Rev., 2012, 41, 1499.        

Industrial biotechnology―the future of green chemistry?, Udo Kragl et al., Green Chem., 2011, 13, 3007.  

Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis, Christopher M. Clouthier and Joelle Pelletier, Chem. Soc. Rev., 2012, 41, 1585.  

Enzyme immobilization on/in polymeric membranes: status, challenges and perspectives in biocatalytic membrane reactors (BMRs), Yamini Satyawali et al., Green Chem., 2011, 13, 1609.  

Immobilization technology: a sustainable solution for biofuel cell design, Xiao-Yu Yang et al., Energy Environ. Sci., 2012, 5, 5540-5563  

Green chemistry oriented organic synthesis in water, Marc-Olivier Simon and Chao-Jun Li, Chem. Soc. Rev., 2012, 41, 1415.   

Fischer–Tropsch fuels refinery design, Arno de Klerk, Energy Environ. Sci., 2011, 4, 1177.

The importance of green chemistry in process research and development, Peter J. Dunn, Chem. Soc. Rev., 2012, 41, 1452.   

Alternative energy input: mechanochemical, microwave and ultrasound-assisted organic synthesis, R. B. Nasir Baig and Rajender S. Varma, Chem. Soc. Rev., 2012, 41, 1559. 

Image courtesy of Shutterstock

Ionic liquid processing of cellulose, Robin D. Rogers et al., Chem. Soc. Rev., 2012, 41, 1519. 

Processing of metals and metal oxides using ionic liquids, Andrew P. Abbott et al., Green Chem., 2011, 13, 471. 

Continuous reactions in supercritical carbon dioxide: problems, solutions and possible ways forward, Xue Han and Martyn Poliakoff, Chem. Soc. Rev., 2012, 41, 1428. 

Green materials synthesis with supercritical water, Tadafumi Adschiri et al., Green Chem., 2011, 13, 1380. 

Multiple objectives in biofuels sustainability policy, Jon C. Lovett et al., Energy Environ. Sci., 2011, 4, 261. 

Conversion of biomass to selected chemical products, Pierre Gallezot, Chem. Soc. Rev., 2012, 41, 1538.   

Toward a rational control of solid acid catalysis for green synthesis and biomass conversion, Ken-ichi Shimizu and Atsushi Satsuma, Energy Environ. Sci., 2011, 4, 3140-3153   

Waste materials―catalytic opportunities: an overview of the application of large scale waste materials as resources for catalytic applications, J. S. J. Hargreaves et al., Green Chem., 2011, 13, 16.   

Recent advances in the recycling of homogeneous catalysts using membrane separation, Dieter Vogt et al., Green Chem., 2011, 13, 2247.   

Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates, Xiao-Bing Lu and Donald J. Darensbourg, Chem. Soc. Rev., 2012, 41, 1462.

Keep up-to-date with the latest reviews and primary research in this field by registering for our e-alerts today!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Chemistry Chair receives two more scientific acolades

Professor Martyn Poliakoff from the University of Nottingham and Chair of the Green Chemistry Editorial Board, has been awarded the Royal Society of Chemistry’s Nyholm Prize for Education and has been elected as a foreign member of the Russian Academy of Sciences.

The Nyholm Prize for Education, in honour of Sir Ronald Hyholm, has been awarded to Professor Poliakoff for his work in bringing a whole new audience to chemistry through the Periodic Table of Videos.  Professor Poliakoff said:

“I was really happy to be awarded the Nyholm Prize which I regard as a prize for the whole of the Periodic Table of Videos team. It is particularly gratifying as Sir Ronald Nyholm, in whose honour this prize is named, was a hugely important figure in both chemical research and chemical education.”

Professor Poliakoff will present a talk entitled ‘From Test Tube to YouTube’ at the RSC Education Division Nyholm Symposium at the University of Nottingham on Wednesday the 8th February. 

Professor Poliakoff has also been elected as a foreign member of the Russian Academy of Sciences, an honour which is particularly special due to his own strong links with the country. 

Green Chemistry would like to extend our warmest congratulations to Professor Poliakoff.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Chemistry Issue 2 now online!

The latest issue of Green Chemistry is now available online.

The front cover of this issue features work by Rodrigo Teixeira from the University of Alabama in Huntsville, USA who reports the energy efficient extraction of fuel and chemical feedstocks from algae.  The deconstruction of algae cell walls and release of the cells contents was achieved by dissolution and hydrolysis of wet algae biomass in ionic liquids.  This process does not require acids, bases or any other catalysts, and can be completed in less than 50 mins (regardless of the algae species) at 100-140 °C and atmospheric pressure. 

Energy-efficient extraction of fuel and chemical feedstocks from algae, Rodrigo E. Teixeira, Green Chem., 2012, 14, 419-427

The inside front cover highlights work by Richard Daniellou, Daniel Plusquellec and colleagues from the National School of Chemistry of Rennes and the European University of Brittany, France, who report aqueous solutions of facial amphiphilic carbohydrates as a sustainable media for organocatalyzed direct aldol reactions.  Their system was applied to the direct aldol reaction of m-nitrobenzaldehyde with various cyclohexanones, and proceeded with high yields, shortened reaction times and improved diastereoselectivities. 

Aqueous solutions of facial amphiphilic carbohydrates as sustainable media for organocatalyzed direct aldol reactions, Ana Bellomo, Richard Daniellou and Daniel Plusquellec, Green Chem., 2012, 14, 281-284

Read these articles for free until the 14th March 2012!

Stay up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

One-pot synthesis of heterocycles

Read about two of our latest hot articles on one-pot syntheses of heterocycles…

Yong Huang (Peking University, China) and Hong Shen (Merck Research Laboratories, New Jersey, USA) and colleagues report the synthesis of medicinally useful heterocycles such as pyridazinones and dihydropyrimidinones through a mild and highly efficient one-pot triple cascade procedure.  The cascade involves a Claisen-decarboxylation, an electrophilic reaction and subsequent heterocyclisation.  Indazoles and benzofurans could also be constructed through a double cascade reaction.  Click on the link below to find out more…

One-pot synthesis of useful heterocycles in medicinal chemistry using a cascade strategy, Guiyong Wu, Weiyu Yin, Hong C. Shen and Yong Huang, Green Chem., 2012, DOI: 10.1039/C2GC16457D

Li-Rong Wen, Ming Li and colleagues from Qingdao University of Science and Technology, China, present the efficient, solvent-free synthesis of imidazo[1,2-α]pyridine derivatives via a one-pot three-component reaction.  The reaction involves annualtion of heterocyclic ketene aminals and β-oxodithioesters with aldehydes using ET3N as the catalyst. The procedure is completed quickly with high regioselectivity and allows for easy purification.  Click on the link below to find out more…

Solvent-free and efficient synthesis of imidazo[1,2-a]pyridine derivatives via a one-pot three-component reaction, Li-Rong Wen, Zhao-Rui Li, Ming Li and Han Cao, Green Chem., 2012, DOI: 10.1039/C2GC16388H

These articles are free to access until the 2nd March 2012!  

Stay up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Top ten most accessed articles in December

This month sees the following articles in Green Chemistry that are in the top ten most accessed:-

Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3·6H2O catalyst in a biphasic solvent system
Yu Yang, Chang-wei Hu and Mahdi M. Abu-Omar
Green Chem., 2012, Advance Article, DOI: 10.1039/C1GC15972K

l-Proline catalysed multicomponent synthesis of 3-amino alkylated indoles via a Mannich-type reaction under solvent-free conditions
Atul Kumar, Maneesh Kumar Gupta and Mukesh Kumar
Green Chem., 2012, Advance Article, DOI: 10.1039/C1GC16297G

Recent advances in ionic liquid catalysis
Qinghua Zhang, Shiguo Zhang and Youquan Deng
Green Chem., 2011, Advance Article, DOI: 10.1039/C1GC15334J

Rh(i) complexes supported on a biopolymer as recyclable and selective hydroformylation catalysts
Banothile C. E. Makhubela, Anwar Jardine and Gregory S. Smith
Green Chem., 2012, Advance Article, DOI: 10.1039/C1GC15979H

Ionic liquids from renewable biomaterials: synthesis, characterization and application in the pretreatment of biomass
Qiu-Ping Liu, Xue-Dan Hou, Ning Li and Min-Hua Zong
Green Chem., 2012, Advance Article, DOI: 10.1039/C2GC16128A

Ionic liquid mediated one-pot synthesis of 6-aminouracils
Sunil S. Chavan and Mariam S. Degani
Green Chem., 2012, Advance Article, DOI: 10.1039/C1GC15940B

Green synthesis of metal nanoparticles using plants
Siavash Iravani
Green Chem., 2011, 13, 2638-2650, DOI: 10.1039/C1GC15386B

Liquid hydrocarbon fuels from cellulosic feedstocks via thermal deoxygenation of levulinic acid and formic acid salt mixtures
Paige A. Case, Adriaan R. P. van Heiningen and M. Clayton Wheeler
Green Chem., 2012, 14, 85-89, DOI: 10.1039/C1GC15914C

Conversion of fructose and inulin to 5-hydroxymethylfurfural in sustainable betaine hydrochloride-based media
Karine De Oliveira Vigier, Adlene Benguerba, Joël Barrault and François Jérôme
Green Chem., 2012, Advance Article, DOI: 10.1039/C1GC16236E

Aqueous solutions of facial amphiphilic carbohydrates as sustainable media for organocatalyzed direct aldol reactions
Ana Bellomo, Richard Daniellou and Daniel Plusquellec
Green Chem., 2012, Advance Article, DOI: 10.1039/C1GC16326D

Why not take a look at the articles today and blog your thoughts and comments below.

Fancy submitting an article to Green Chemistry? Then why not submit to us today or alternatively email us your suggestions.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Development of recyclable catalysts

Catalysis is one of the most important areas of process and synthetic chemistry.  In view of the vast range of applications, there has been extensive research into making catalysts and catalytic reactions more economical and environmentally friendly.  One aspect of this is developing catalysts which can be recycled and reused over and over again with minimal effort.  This can be particularly important when considering the viability of a process for industrial development, as catalysts are often expensive and so need to be recovered wherever possible in order to keep down costs.

Green Chemistry provides an excellent forum for such work and below is a selection of the cutting edge research we have published in this area over the last couple of years.  These articles have been made free to access until the 27th February 2012, so make the most of this and take a look…

Why not keep up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts!

Heterogeneously catalysed Strecker-type reactions using supported Co(II) catalysts: microwave vs.conventional heating, Fatemeh Rajabi, Saghar Nourian, Sara Ghiassian, Alina M. Balu, Mohammad Reza Saidi, Juan Carlos Serrano-Ruiz and Rafael Luque, Green Chem., 2011, 13, 3282-3289

Recyclable copper catalysts based on imidazolium-tagged C2-symmetric bis(oxazoline) and their application in D–A reactions in ionic liquids, Zhi-Ming Zhou, Zhi-Huai Li, Xiao-Yan Hao, Xiao Dong, Xin Li, Li Dai, Ying-Qiang Liu, Jun Zhang, Hai-feng Huang, Xia Li and Jin-liang Wang, Green Chem., 2011, 13, 2963-2971

Amorphous carbon-silica composites bearing sulfonic acid as solid acid catalysts for the chemoselective protection of aldehydes as 1,1-diacetates and for N-, O– and S-acylations, Princy Gupta and Satya Paul, Green Chem., 2011, 13, 2365-2372

Recyclable mesoporous silica-supported chiral ruthenium-(NHC)NN-pincer catalysts for asymmetric reactions, Carolina del Pozo, Avelino Corma, Marta Iglesias and Félix Sánchez, Green Chem., 2011, 13, 2471-2481

Simple and recyclable ionic liquid based system for the selective decomposition of formic acid to hydrogen and carbon dioxide, M. E. M. Berger, D. Assenbaum, N. Taccardi, E. Spiecker and P. Wasserscheid, Green Chem., 2011, 13, 1411-1415

An efficient and heterogeneous recyclable palladium catalyst for chemoselective conjugate reduction of α,β-unsaturated carbonyls in aqueous medium, Dattatraya B. Bagal, Ziyauddin S. Qureshi, Kishor P. Dhake, Shoeb R. Khan and Bhalchandra M. Bhanage, Green Chem., 2011, 13, 1490-1494

Iron(III)-based ionic liquid-catalyzed regioselective benzylation of arenes and heteroarenes, Jian Gao, Jin-Quan Wang, Qing-Wen Song and Liang-Nian He, Green Chem., 2011, 13, 1182-1186

Pd immobilized on amine-functionalized magnetite nanoparticles: a novel and highly active catalyst for hydrogenation and Heck reactions, Fengwei Zhang, Jun Jin, Xing Zhong, Shuwen Li, Jianrui Niu, Rong Li and Jiantai Ma, Green Chem., 2011, 13, 1238-1243

Catalytic oxidative desulfurization with a hexatungstate/aqueous H2O2/ionic liquid emulsion system, Yuxiao Ding, Wenshuai Zhu, Huaming Li, Wei Jiang, Ming Zhang, Yuqing Duan and Yonghui Chang, Green Chem., 2011, 13, 1210-1216

Supported ionic liquid silica nanoparticles (SILnPs) as an efficient and recyclable heterogeneous catalyst for the dehydration of fructose to 5-hydroxymethylfurfural, Kalpesh B. Sidhpuria, Ana L. Daniel-da-Silva, Tito Trindade and João A. P. Coutinho, Green Chem., 2011, 13, 340-349

A silica gel supported dual acidic ionic liquid: an efficient and recyclable heterogeneous catalyst for the one-pot synthesis of amidoalkyl naphthols, Qiang Zhang, Jun Luo and Yunyang Wei, Green Chem., 2010, 12, 2246-2254

Highly recyclable, imidazolium derived ionic liquids of low antimicrobial and antifungal toxicity: A new strategy for acid catalysis, Lauren Myles, Rohitkumar Gore, Marcel Špulák, Nicholas Gathergood and Stephen J. Connon, Green Chem., 2010, 12, 1157-1162

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Systematic optimization of a biocatalytic two-liquid phase oxyfunctionalization process guided by ecological and economic assessment

Scientists from Germany have optimized and assessed the ecological performance of a whole-cell two-liquid phase biocatalytic epoxidation of styrene.

Bruno Bühler and colleagues from the Technical University of Dortmund and Saarland University, Germany, considered how the ecological aspects of this reaction could be improved.  Currently, the ecological performance is hampered by the organic carrier solvent employed (bis(2-ethylhexyl)phthalate) which is toxic to humans and is produced from non-renewable resources.  Instead ethyl oleate (a biodiesel constituent) was tested and shown to be an environmentally attractive and cost-competitive solvent.

The authors also replaced the carbon/energy source glucose with glycerol as the latter is a waste product from the biodiesel and soap industries and thus cheap and abundant.  However, the use of glycerol was found to reduce the overall ecological and economic performance of the process.  The work presented here by Bühler and co-workers illustrates the capability of these assessments to identify critical process parameters and to enable systematic development towards industrial implementation.

This article is free to access until the 24th February 2012!  Click on this link below to find out more…

Systematic optimization of a biocatalytic two-liquid phase oxyfunctionalization process guided by ecological and economic assessment, Daniel Kuhn, Mattijs K. Julsing, Elmar Heinzle and Bruno Bühler, Green Chem., 2012, DOI: 10.1039/C2GC15985F

You may find this article of interest too – also free to access until the 24th February 2012, so why not take a look…

Intensification and economic and ecological assessment of a biocatalytic oxyfunctionalization process, Daniel Kuhn, Muhammad Abdul Kholiq, Elmar Heinzle, Bruno Bühler and Andreas Schmid, Green Chem., 2010, 12, 815-827

Keep up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Tailor-made biopolymers from leather waste valorisation

Scientists from Spain report tailor-made collagen biopolymers from tanning waste with diverse shapes such as fibers, films and sponges. 

Mercedes Catalina (Advanced Chemistry Institute of Catalunya), Rafael Luque (University of Cordoba) and colleagues valorised tanning waste from leather processing to give biopolymers which could be easily modified using various methodologies with the aim of generating waste-derived renewable biopolymers.  For example, introducing cross-linking agents on the  matrix network of the biopolymer provided a material with improved properties.  The authors envisage these materials could have promising in fields such as cosmetics and medicines.

This article is free to access until the 18th February 2012! Click on the link below to find out more…

Tailor-made biopolymers from leather waste valorisation, Mercedes Catalina, Jaume Cot, Alina Mariana Balu, Juan Carlos Serrano-Ruiz and Rafael Luque, Green Chem., 2012, DOI: 10.1039/C2GC16330F

You may find this review article of interest too which is also free to access.  Why not take a look…

Waste materials – catalytic opportunities: an overview of the application of large scale waste materials as resources for catalytic applications, M. Balakrishnan, V. S. Batra, J. S. J. Hargreaves and I. D. Pulford, Green Chem., 2011, 13, 16-24

Keep up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Linseed and soybean oil-based polyurethanes prepared via the non-isocyanate route and catalytic carbon dioxide conversion

Soy- and linseed oil-based polyurethanes were synthesized by curing carbonated soybean and linseed oils with different diamines. 

Moritz Bähr and Rolf Mülhaupt from the Freiburg Materials Research Center (FMF) and Department of
Macromolecular Chemistry, Germany, have developed a non-isocyante route to soy- and linseed oil-based polyurethanes.  The route involved conversion of the epoxidised seed oils with carbon dioxide to form cyclic carbonates catalysed by tetra-butylammonium bromide and silica supported 4-pyrrolidinopyridium iodide.  The catalysts could be easily recovered without needing traditional solvent extraction.  The resulting carbonates were then cured with various amines to give the polyurethanes.

As well as avoiding the use of toxic chemicals, this route also led to some polkyurethanes with increased glass transition temperatures and improved stiffness.  To find out more, just click on the article link below.  This article is currently free to access until the 15th February 2012!

Linseed and soybean oil-based polyurethanes prepared viathe non-isocyanate route and catalytic carbon dioxide conversion, Moritz Bähr and Rolf Mülhaupt, Green Chem., 2012, DOI: 10.1039/C2GC16230J

You may also find these articles of interest – free to access until the 15th February 2012 too!  So why not take a look…

Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid, Laurent Mialon, Alexander G. Pemba and Stephen A. Miller, Green Chem., 2010, 12, 1704-1706

Vegetable oil-based polymeric materials: synthesis, properties, and applications, Ying Xia and Richard C. Larock, Green Chem., 2010, 12, 1893-1909

Keep up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Chemistry article in C&EN

A recently published Green Chemistry aricle by David Cole-Hamilton (University of St. Andrews, UK), Stefan Mecking (University of Konstanz, Germany) and colleagues has just been featured in the latest issue of Chemistry & Engineering News (C&EN). 

The paper reports the synthesis of the diester dimethyl 1,19-nonadecanedioate from the palladium catalysed methoxycarbonylation of various commerial oils, including olive and sunflower oils.  The resulting product can then be easily converted to the diol and diacid, and all three chemicals can serve as useful polymer precursors. 

This article is now free to access until the 15th February 2012!  Click the link below to find out more…

Polymer precursors from catalytic reactions of natural oils, Marc R. L. Furst, Ronan Le Goff, Dorothee Quinzler, Stefan Mecking, Catherine H. Botting and David J. Cole-Hamilton, Green Chem., 2012, DOI: 10.1039/C1GC16094J

Keep up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)