Solvent guide to replce DCM in chromatography

A quick bench-top solvent guide reference has been developed in order for alternative solvents to dichloromethane (DCM) to be selected for separation of a variety of organic molecules.

Chromatography is widely used by synthetic chemists for purification as it can be broadly applied to a vast range of compounds and is very adaptable.  However, the largest contributor of chlorinated solvent waste in the medicinal chemistry industry is chromatography – primarily DCM.  Given the significant human and environmental toxicities associated with DCM, reduction or ideally replacement of this solvent is important.

Guide to select alternative solvent systems to DCM for ellution of neutral compoundsHere, Joshua Taygerly, Emily Peterson and colleagues from Amgen Inc. and Northeastern University, USA have developed a guide which aims to help synthetic chemists find suitable and more environmentally friendly alternatives to a DCM-solvent system for chromatographic purification of compounds.  The authors selected several ‘drug-like’ molecules which reflected the types of molecules regularly prepared and purified, and separated these into three categories – acidic, basic and neutral (where ‘neutral’ refers to compounds without a carboxylic acid or amine functionality).  They tested several alternative solvent systems and assembled a figure which allows the scientist to find the DCM solvent system that would have been applied to a particular molecule and follow it up vertically to find potentially equivalent systems (see the guide for neutral compounds right).

The primary use of this guide is to provide chemists with a quickly identifiable starting point for selecting alternative solvent systems to DCM.

You can read this article for free until the 17th October 2012!

A convenient guide to help select replacement solvents for dichloromethane in chromatography, Joshua P. Taygerly, Larry M. Miller, Alicia Yee and Emily A. Peterson, Green Chem., 2012, DOI: 10.1039/C2GC36064K

You may also be interested in these articles relating to solvent selection – free to access for 2 weeks:

Searching for green solvents, Philip G. Jessop, Green Chem., 2011, 13, 1391-1398

Expanding GSK’s solvent selection guide – embedding sustainability into solvent selection starting at medicinal chemistry, Richard K. Henderson, Concepción Jiménez-González, David J. C. Constable, Sarah R. Alston, Graham G. A. Inglis, Gail Fisher, James Sherwood, Steve P. Binks and Alan D. Curzons, Green Chem., 2011, 13, 854-862

Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation, Kim Alfonsi, Juan Colberg, Peter J. Dunn, Thomas Fevig, Sandra Jennings, Timothy A. Johnson, H. Peter Kleine, Craig Knight, Mark A. Nagy, David A. Perry and Mark Stefaniak, Green Chem., 2008, 10, 31-36

Stay up-to-date with the latest news and content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Meet our Authors: Liang-Nian He

Liang-Nian He Liang-Nian He is a Professor at Nankai University in China.  His research interests current revolve around carbon dioxide (CO2) chemistry (capture and utilization) and sustainable synthetic chemistry.  Liang-Nian He kindly took a few moments to chat to Green Chemistry

Who or what initially inspired you to become a chemist?

The life of an academic is simple and straightforward and I enjoy working in an academic environment. I became interested in learning chemistry at the age of 12 in junior high school, which aroused my curiosity to know what happens behind such phenomena such as combustion of magnesium in oxygen, and the color change in the acid-base reaction. However, there was very little science education at that time. When I continued my college education, chemistry was taught formally, and my interest developed further. I was so fascinated by the nature of matter and had such a strong passion to understand all the interesting things in nature at the molecular level. Chemistry is such a powerful tool that can create almost anything you want. Accordingly, I definitely pursue a career in the field of chemistry when I was conscious of fundamental importance of chemistry to our society from drugs to dyes, from food to clothing.

What has been the motivation behind your recent research?

Chemical utilization of CO2 as a feedstock, promoter or reaction media for producing materials and fuels is attractive as an integral part of the carbon cycle. In particular, establishing large-scale production using CO2 in industry would be a fascinating dream for synthetic chemists. I am very grateful to Professor Toshiyasu Sakakura (National Institute of Advanced Industry Science and Technology, Japan) for introducing me to this emerging state of the art and exciting field of chemistry.

What do you see as the main challenges facing research in this area?

Click here to read more…

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Continuous-flow alkene metathesis

The self-metathesis of 1-octene was used as a model reaction to demonstrate the performance of a continuous-flow alkene metathesis process using supercritical CO2 as the carrier.

Over the last decade or so, olefin metathesis has become widely recognised as a good, general method to generate new C–C bonds, with an excellent synthetic scope.  Here, an international collaboration of scientists from University Ca’Foscari (Italy), the University of Nottingham (UK) and the University of Sydney (Australia) led by Maurizio Selva have developed a continuous-flow process for heterogeneously-catalysed olefin metathesis.

Their process used a Re2O7 supported catalyst on γ-Al2O3, which although deactivated after the first 100-150 mins of the reaction, could be recycled for at least five subsequent reactions without any loss of performance.  Improving this aspect further will be the focus of future research in this area.  The authors propose that this methodology will be applicable to the metathesis of other terminal olefins in the C6-C12range of liquid compounds.

Read this article for free until the 11th October!

Continuous-flow alkene metathesis: the model reaction of 1-octene catalyzed by Re2O7/γ-Al2O3with supercritical CO2 as a carrier, Maurizio Selva, Sandro Guidi, Alvise Perosa, Michela Signoretto, Pete Licence and Thomas Maschmeyer, Green Chem., 2012, DOI: 10.1039/C2GC35983A    (Advanced Article)

You may also be interested in these articles – free to access for 2 weeks:

Electrostatic immobilization of an olefin metathesis pre-catalyst on iron oxide magnetic particles, Matthew J. Byrnes, Andrew M. Hilton, Clint P. Woodward, William R. Jackson and Andrea J. Robinson, Green Chem., 2012, 14, 81-84

Cross-metathesis transformations of terpenoids in dialkyl carbonate solvents, Hallouma Bilel, Naceur Hamdi, Fethy Zagrouba, Cédric Fischmeister and Christian Bruneau, Green Chem., 2011, 13, 1448-1452

Continuous flow homogeneous alkene metathesis with built-in catalyst separation, Rubén Duque, Eva Öchsner, Hervé Clavier, Fréderic Caijo, Steven P. Nolan, Marc Mauduit and David J. Cole-Hamilton, Green Chem., 2011, 13, 1187-1195

Stay up-to-date with the latest news and content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

4th International IUPAC Conference on Green Chemistry

The  4th International IUPAC Conference on Green Chemistry (4th ICGC) was held in Foz do Iguaçu, Brazil between the 25-29th August 2012.  The conference focused on broad topics including benign synthesis/processes, green chemistry for energy production, chemicals from renewable resources, green engineering, education in green chemistry and engineering and policy. 

The conference was attended by the Editor, Sarah Ruthven and several members of the Journal’s Editorial and Advisory Boards spoke at the event, including Professor Buxing Han, Professor Paul Anastas, Professor James ClarkProfessor Philip Jessop, Professor Robin Rogers and Professor Roger Sheldon

The Green Chemistry poster prize which was presented by Professor Buxing Han was awarded to Tiago Artur da Silva from the University of Sao Paulo (pictured right). 

The full title of the poster was: AuPd nanoparticles: reusable magnetic responsive catalyst for green oxidation of alcohols; by Tiago Artur da Silva, Érico Teixeira-Neto, Liane Marcia Rossi.

Congratulations to Tiago on winning this prize.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

How synthetic organic chemistry can help to feed the world

Chemistry for Tomorrow’s World 2012: Using Chemistry to Improve Agricultural Productivity – a policy event

Azoxystrobin is the world’s leading agricultural fungicide. It is a fully synthetic compound, whose invention was inspired by the structure and activity of the naturally-occurring fungicide strobilurin A. Today it is used worldwide to control fungi growing on over 120 types of crop, improving plant health, raising quality and increasing yield. The success of the project highlights the crucial importance of chemistry in meeting grand challenges such as global food security and the broader applicability of skills such as natural product synthesis. Keynote speaker Dr John Clough led the team of chemists at Syngenta that invented azoxystrobin. He will discuss the key role that synthetic organic chemistry played in creating an effective and safe fungicide. This policy event is organised by the Royal Society of Chemistry as part of a series of lectures designed to bring together active researchers and policy makers to highlight the role of the chemical sciences in tackling societal issues.

Be inspired - The Chemistry Centre

This event will be held in the Chemistry Centre on 26 September at the RSC’s recently refurbished building in Burlington House, London. Doors will open at 17:30 for refreshments. The event will begin at 18:00 and will finish with a wine reception. Please follow the link here for information and to register for the event.

If you cannot make it why not watch the video of the event which will be uploaded on the website after the event.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

What’s new with carbon dioxide?

In this tutorial review, Donald Darensbourg and Stephanie Wilson highlight the recent advances in the copolymerisation of carbon dioxide (CO2) with epoxides (oxiranes) to produce polycarbonates.

The advances in this area are discussed with specific reference to catalysts that have been designed to afford high selectivity for the copolymer versus cyclic carbonate formation.  The authors not only illustrate the advances in poly(propylene carbonate) (PPC) production by also investigate the underlying reasons for the differences in the reactivity of propylene oxide and cyclohexene oxide. 

Darensbourg and Wilson conclude by highlighting the need for improved catalysts which can prevent the degradation of PPC in the presence of azide ions – specifically those catalysts with appended amines or ammonium salts. 

Interested?  Read the full article for free until the 2nd October 2012

What’s new with CO2? Recent advances in its copolymerization with oxiranes, Donald J. Darensbourg and Stephanie J. Wilson, Green Chem., 2012, DOI: 10.1039/C2GC35928F

You may also be interested in this critical review article – free to access for 2 weeks:

Synthesis of cyclic carbonates from epoxides and CO2, Michael North, Riccardo Pasquale and Carl Young, Green Chem., 2010, 12, 1514-1539

Stay up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol

Scientists from Denmark and the USA have achieved efficient conversion of 5-hydroxymethylfurfural (HMF) to valuable chemicals over a Cu-doped porous metal oxide catalyst in supercritical methanol.

HMF (readily obtained from hexose sugars) has been identified as a key platform compound to generate useful renewable chemicals for the fuel industry, such as 2,5-dimethylfuran (DMF) and 2,5-dimethyltetrahydrofuran (DMTHF).  However, achieving selective transformation of HMF to a specific product and preventing the formation of undesired side-products remains a challenge.

In this work, a collaboration between scientists at the Technical University of Denmark, Yale University (USA) and the University of California Santa-Barbara (USA) led by Katalin Barta and Andreas Riisager have developed an one-pot procedure for the reduction of HMF.  The catalyst was prepared in aqueous solution from inexpensive and earth-abundant starting materials before undergoing calcination.  By tuning the reaction temperature, DMF or DMTHF and 2-hexanol could be obtained as the major products, and no formation of higher boiling side products or undesired char was detected. 

This article is free to access until the 28th September 2012!  Click on this link below to fine out more…

One-pot reduction of 5-hydroxymethylfurfural viahydrogen transfer from supercritical methanol, Thomas S. Hansen, Katalin Barta, Paul T. Anastas, Peter C. Ford and Anders Riisager, Green Chem., 2012, 14, 2457-2461

You may also be interested in reading this article – free to access for 2 weeks:

Synergy of boric acid and added salts in the catalytic dehydration of hexoses to 5-hydroxymethylfurfural in water, Thomas S. Hansen, Jerrik Mielby and Anders Riisager, Green Chem., 2011, 13, 109-114

Stay up-to-date with the latest news and content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Top ten most accessed articles in July

This month sees the following articles in Green Chemistry that are in the top ten most accessed:-

Multicomponent reactions in unconventional solvents: state of the art
Yanlong Gu
Green Chem., 2012, Advance Article, DOI: 10.1039/C2GC35635J, Critical Review

Direct conversion of carbohydrates to 5-hydroxymethylfurfural using Sn-Mont catalyst
Jianjian Wang, Jiawen Ren, Xiaohui Liu, Jinxu Xi, Qineng Xia, Yanhong Zu, Guanzhong Lu and Yanqin Wang
Green Chem., 2012, Advance Article, DOI: 10.1039/C2GC35699F, Paper

A catalyst-free reaction in water: synthesis of benzo[4,5]imidazo[1,2-a]pyrimido[4,5-d]pyrimidin-4(1H)-one derivatives
Junhua Liu, Min Lei and Lihong Hu
Green Chem., 2012, Advance Article, DOI: 10.1039/C2GC35745C, Paper

Evolution of asymmetric organocatalysis: multi- and retrocatalysis
Raffael C. Wende and Peter R. Schreiner
Green Chem., 2012, Advance Article, DOI: 10.1039/C2GC35160A, Critical Review

KOH-mediated transition metal-free synthesis of imines from alcohols and amines
Jian Xu, Rongqiang Zhuang, Lingling Bao, Guo Tang and Yufen Zhao
Green Chem., 2012, Advance Article, DOI: 10.1039/C2GC35714C, Communication

Paul Anastas and the Robin Hood Question
Martyn Poliakoff
Green Chem., 2012,14, 2089-2090, DOI: 10.1039/C2GC90027K, Editorial

Catalyst-free hydroarylation of in situ generated ortho-quinone methide (o-QM) with electron rich arenes in water
Atul Kumar, Mukesh Kumar and Maneesh Kumar Gupta
Green Chem., 2012, Advance Article, DOI: 10.1039/C2GC35741K, Communication

Water mediated Heck and Ullmann couplings by supported palladium nanoparticles: importance of surface polarity of the carbon spheres
Ahmed Kamal, Vunnam Srinivasulu, B. N. Seshadri, Nagula Markandeya, A. Alarifi and Nagula Shankaraiah
Green Chem., 2012, Advance Article, DOI: 10.1039/C2GC16430B, Paper

Facile construction of densely functionalized 4H-chromenes via three-component reactions catalyzed by L-proline
Minghao Li, Biao Zhang and Yanlong Gu
Green Chem., 2012, Advance Article, DOI: 10.1039/C2GC35668F, Paper

Bromination of aromatic compounds using an Fe2O3/zeolite catalyst
Yuta Nishina and Keishi Takami
Green Chem., 2012, Advance Article, DOI: 10.1039/C2GC35821B, Communication

Why not take a look at the articles today and blog your thoughts and comments below.

Fancy submitting an article to Green Chemistry? Then why not submit to us today or alternatively email us with your suggestions.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Meet our Editorial Board: Walter Leitner (Chair)

Walter Leitner is a full Professor at Technische Chemie und Petrolchemie, Institut für Technische Chemie und Makromolekulare Chemie at the RWTH Aachen University and is the new Chair of the Green Chemistry Editorial Board.  As Walter takes up his new position, we asked for his thoughts on how sees the Journal, and the area of green chemistry, developing in the future…

Who or what initially inspired you to become a chemist?

I cannot fix this to a single person or event. To be honest, a large number of coincidences and external factors led me to study chemistry at Regensburg University, and it was mostly during my time as PhD-student with Henri Brunner and PostDoc with John Brown that I developed a strong research interest into catalysis and organometallic chemistry – and started to become fascinated by the idea of academic freedom!

You’ve recently been appointed as the new Chair of the Green Chemistry Editorial Board – what most excites you about the Journal?

The ever increasing scientific quality of the contributions and the incredible enthusiasm of the community – just coming back from the Green Chemistry Gordon Conference near Lucca in Italy, I am still nurtured by the same experience there!

Where would you like to see the Journal develop during your time as Chair?

Click here to read more…

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Issue 9 of Green Chemistry now online!

The latest issue of Green Chemistry is now available to read online.

The front cover of issue 9 features work by Tomislav Frišĉić from the University of Cambridge (UK) and McGill University (Canada) and colleagues from Croatia, the UK and USA.  The authors discuss the concept of a solvent-free research laboratory which would eliminate the use of solvents for both chemical synthesis and the structural characterization.  The team used the mechanochemical click coupling of isothiocyanates and amines as the model reaction using an electrical, digitally controllable laboratory mill.  49 different thiourea derivatives were synthesized and all products were characterised by X-ray diffraction and solid-state NMR spectroscopy.

A model for a solvent-free synthetic organic research laboratory: click-mechanosynthesis and structural characterization of thioureas without bulk solvents, Vjekoslav Štrukil, Marina D. Igrc, László Fábián, Mirjana Eckert-Maksić, Scott L. Childs, David G. Reid, Melinda J. Duer, Ivan Halasz, Cristina Mottillo and Tomislav Friščić, Green Chem., 2012, 14, 2462-2473

The inside front cover of this issue highlights work by Chan Beum Park and co-workers from KAIST and Seoul National University, Korea, who report the synthesis of graphene-wrapped CuO hybrid materials by CO2mineralization.  These materials were created from CoCO3 microspheres mineralized on graphene oxide nanosheets and were shown to be promising materials for lithium ion batteries.  The hybrid materials demonstrated greatly enhanced stability and recyclability of the CuO anode for the Li ion batteries.

Synthesis of graphene-wrapped CuO hybrid materials by CO2 mineralization, Jong Wan Ko, Sung-Wook Kim, Jihyun Hong, Jungki Ryu  Kisuk Kang and Chan Beum Park, Green Chem., 2012, 14, 2391-2394

These articles are both free to access for 6 weeks

Keep up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)