HOT papers in Green Chemistry

Here are the latest HOT papers published in Green Chemistry, as recommended by the referees:

The potential of methylsiloxanes as solvents for synthetic chemistry applications
Mohd Azri Ab Rani, Nadine Borduas, Victoria Colquhoun, Robert Hanley, Henry Johnson, Solène Larger, Paul D. Lickiss, Veronica Llopis-Mestre, Selina Luu, Martin Mogstad, Philipp Oczipka, James R. Sherwood, Tom Welton and Jun-Yi Xing  
Green Chem., 2014, Advance Article, DOI: 10.1039/C3GC42036A

C3GC42036A ga


A mechanochemical strategy for oxidative addition: remarkable yields and stereoselectivity in the halogenation of organometallic Re(I) complexes
José G. Hernández, Neil A. J. Macdonald, Cristina Mottillo, Ian S. Butler and Tomislav Friščić 
Green Chem., 2014, Advance Article, DOI: 10.1039/C3GC42104J

C3GC42104J ga


A PDMS membrane with high pervaporation performance for the separation of furfural and its potential in industrial application
Fan Qin, Shufeng Li, Peiyong Qin, M. Nazmul Karim and Tianwei Tan  
Green Chem., 2014, Advance Article, DOI: 10.1039/C3GC41867G

C3GC41867G ga 

All the papers listed above are free to access for the next 4 weeks!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Chemistry Advisory Board member Professor Richard Wool wins 2013 Presdiential Green Chemistry Challenge Award

Professor Richard Wool, Green Chemistry Advisory Board winners of the 2013 Presidential Green Chemistry Challenge AwardsGreen Chemistry Advisory Board member Professor Richard Wool has won the 2013 Presdiential Green Chemistry Challenge Award for Academic research. He has been recognized for his research in creating several materials from less toxic and renewable biobased feedstocks such as vegetable oils, chicken feathers and flax that can be used as adhesives, composites, foams, and even circuit boards and as a leather substitute. Professor Wool is currently the Director of the ACRES (Affordable Composites from Renewable Resources) Program at the University of Delaware.

Green Chemistry would like to extend our congratulations to Professor Wool on this achievement.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Chemistry issue 1 is now available online

Issue 1 of Green Chemistry is now available to read online.

This year we celebrate our milestone of 15 years of publication, and in issue 1 you can read an Editorial from all of Green Chemistry’s Chairs of the Editorial board and Scientific Editors marking the occasion.

We have also put together a special web collection, with contributions from authors who have had highly cited articles from each of the past 15 years : 15 Years of Green Chemistry

GC issue 1 OFCThe front cover this month (pictured left) features work by Brian Davison and co-workers. In their work they investigate the mechanism of biomass breakdown. Understanding this process should lead to more efficient use of biomass.

Read the full article:
Common processes drive the thermochemical pretreatment of lignocellulosic biomass
Paul Langan, Loukas Petridis, Hugh M. O’Neill, Sai Venkatesh Pingali, Marcus Foston, Yoshiharu Nishiyama, Roland Schulz, Benjamin Lindner, B. Leif Hanson, Shane Harton, William T. Heller, Volker Urban, Barbara R. Evans, S. Gnanakaran, Arthur J. Ragauskas, Jeremy C. Smith and Brian H. Davison  
Green Chem., 2014, 16, 63-68, DOI: 10.1039/C3GC41962B


GC issue 1 IFCThe inside front cover this month (pictured right) features work by Kevin Moeller and co-workers from Missouri, USA. In their work they set up a simple solar-electrochemical reaction to recycle Os(VIII)-, TEMPO-, Ce(IV)-, Pd(II)-, Ru(VIII)-, and Mn(V)-oxidants.

Read the full article:
Sunlight, electrochemistry, and sustainable oxidation reactions
Bichlien H. Nguyen, Alison Redden and Kevin D. Moeller  
Green Chem., 2014, 16, 69-72, DOI: 10.1039/C3GC41650J

Both of these articles are free to access for 6 weeks!

Keep up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hydrogen breaks strong bonds with brute force

Jessica Cocker writes about a HOT Green Chemistry article for Chemistry World

Projectile hydrogen molecules are central to a new green method for precisely breaking one of the most abundant and industrially important bonds you can find.

The hydrogen differentiates its colliding partners by their atomic mass

C–H bonds are very stable and as such their cleavage normally requires either a temperature above 300°C or treatment with something like irradiation – both of which can cause organic molecules to lose their functionality. Now a method developed by Leo Lau of Western University in Canada and colleagues can break C–H bonds without damaging the rest of the molecule.

Lau explains that although H2 is unreactive at room temperature, by raising its kinetic energy to more than 10eV it is possible to drive C–H cleavage when the H2 hits the H atom of a C–H bond. The H2 works as a light-mass projectile and differentiates its colliding partners by their atomic mass and ‘like the scalpel of a skilful surgeon’ only excises a hydrogen atom. The dissociation occurs nearly 100% of the time and all of the other bonds remain intact.


Read the full article in Chemistry World»

Read the original journal article in Green Chemistry:
Cleaving C–H bonds with hyperthermal H2: facile chemistry to cross-link organic molecules under low chemical- and energy-loads
Tomas Trebicky, Patrick Crewdson, Maxim Paliy, Igor Bello, Heng-Yong Nie, Zhi Zheng, Xiaoli Fan, Jun Yang, Elizabeth R. Gillies, Changyu Tang, Hao Liu, K. W. Wong and W. M. Lau  
Green Chem., 2014, Advance Article, DOI: 10.1039/C3GC41460D

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Web Collection marking 15 years of publication of Green Chemistry

To mark the occasion of Green Chemistry completing fifteen years of publication we invited contributions from authors who have had highly cited articles from each of the past 15 years. The result is a growing web collection covering topics of current importance in green chemistry from those who have contributed to developing the field. Details of the contributors, their highly cited article from the year they are representing, and their recent contribution are below. 

Accompanying this collection and further celebrating ‘15 years of Green Chemistry’ is an Editorial containing contributions from all of Green Chemistry’s Chairs of the Editorial board and Scientific Editors giving their views on the area of green chemistry and the changes they have seen since the Journal was launched in 1999… read the Editorial here.

The 15 Years of Green Chemistry collection will be added to throughout 2014 and you can access the articles by clicking on the titles below, or look at the full collection of recent articles online here

Year 15 Years of Green Chemistry Contribution Original Highly Cited Article
1999 Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation
Rajender S. Varma, 2014, Perspective
Solvent-free organic syntheses. using supported reagents and microwave irradiation, Rajender S. Varma, 1999, Paper
2000 Food waste biomass: a resource for high-value chemicals
Lucie A. Pfaltzgraff, Mario De bruyn, Emma C. Cooper, Vitaly Budarin and  James H. Clark, 2013, Perspective
Preparation of a novel silica-supported palladium catalyst and its use in the Heck reaction
James H. Clark, Duncan J. Macquarrie and Egid B. Mubofu, 2000, Paper
2001 Mixing ionic liquids – “simple mixtures” or “double salts”?
Gregory Chatel, Jorge F. B. Pereira, Varun Debbeti, Hui Wang and Robin D. Rogers, 2014, Critical Review
Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation, Jonathan G. Huddleston, Ann E. Visser, W. Matthew Reichert, Heather D. Willauer, Grant A. Broker and Robin D. Rogers, 2001, paper
2005 Green and sustainable manufacture of chemicals from biomass: state of the art
Roger A. Sheldon, 2014, Critical Review
Green solvents for sustainable organic synthesis: state of the art
Roger A. Sheldon, 2005, Critical Review
2006 Are ionic liquids a proper solution to current environmental challenges?
Giorgio Cevasco and Cinzia Chiappe, 2014, Critical Review
Acute toxicity of ionic liquids to the zebrafish (Danio rerio)
Carlo Pretti, Cinzia Chiappe, Daniela Pieraccini, Michela Gregori, Francesca Abramo, Gianfranca Monni and Luigi Intorre, 2006, Communication
2007 Pharmaceutical Green Chemistry process changes – how long does it take to obtain regulatory approval?
Peter J. Dunn, 2013, Perspective
Key green chemistry research areas—a perspective from pharmaceutical manufacturers
David J. C. Constable, Peter J. Dunn, John D. Hayler, Guy R. Humphrey, Johnnie L. Leazer, Jr., Russell J. Linderman, Kurt Lorenz, Julie Manley, Bruce A. Pearlman, Andrew Wells, Aleksey Zaks and Tony Y. Zhang, 2007, Perspective
2008 Towards resource efficient chemistry: Tandem reactions with renewables
Arno Behr, Andreas Johannes Vorholt, Thomas Seidensticker and Karoline Anna Ostrowski, 2013, Critical Review
Improved utilisation of renewable resources: New important derivatives of glycerol
Arno Behr, Jens Eilting, Ken Irawadi, Julia Leschinski and Falk Lindner, 2008, Critical Review
2009 Conversion of glucose and cellulose into value-added products in water and ionic liquids
Jinliang Song, Honglei Fan, Jun Ma and Buxing, 2013, Tutorial Review
Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid
Suqin Hu, Zhaofu Zhang, Jinliang Song, Yinxi Zhou and Buxing Han, 2009, Communication
2011 Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels
Maria J. Climent, Avelino Corma and Sara Iborra, 2014, Critical Review
Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts
Maria J. Climent, Avelino Corma and Sara Iborra, 2011, Critical Review
2012 Continuous process technology: a tool for sustainable production
Charlotte Wiles and Paul Watts, 2014, Tutorial Review
Continuous flow reactors: a perspective
Charlotte Wiles and Paul Watts, 2012, Tutorial Review
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Editorial celebrating 15 years of Green Chemistry

James Clark (Scientific Editor, 199-2003)

James Clark, Scientific Editor, 1999-2003

The first issue of Green Chemistry was published in January 1999; as 2013 comes to a close we are celebrating the completion of 15 years of publication. Over these 15 years articles published in the Journal have recorded the evolving priorities in green chemistry research.

To mark this significant milestone we invited past Chairs of the Editorial Board and Scientific Editors for their views on the area of green chemistry, and the changes they have seen since the Journal was launched.

The result is a wonderfully thought-provoking Editorial which is published in 2014 Issue 1 and we hope you enjoy reading.

Read the Editorial celebrating 15 years of Green Chemistry online for free here.

Walter Leitner (Scientific Editor 2004-2012 and Editorial Board Chair 2012-Present)

Walter Leitner, Scientific Editor 2004-2012 and Editorial Board Chair 2012-Present

Roger Sheldon (Editorial Board Chair 1999-2001)

Roger Sheldon, Editorial Board Chair 1999-2001

Colin Raston (Editorial Board Chair 2002-2005)

Colin Raston, Editorial Board Chair 2002-2005

Martyn Poliakoff (Editorial Board Chair 2006-2011)

Martyn Poliakoff, Editorial Board Chair 2006-2011


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2nd International Conference of the Cluster of Excellence “Tailor-Made Fuels from Biomass (TMFB)”

On the 16th–18th June 2014, the Cluster of Excellence “Tailor-Made Fuels from Biomass (TMFB)” at RWTH Aachen University will organize it’s 2nd International Conference on Biofuel production and combustion. After their International Workshops were turned into an open Conference for the first time in 2013, the Aachen scientists continue to transfer their interdisciplinary research approach to their International Conference which is organized in different sessions that reflect the research structure of the Cluster of Excellence:

 The following topics will be addressed in separate sessions during the conference:

• Biomass Fractionation and Pre-treatmentTailor Made Fuels from Biomass Conference Germany

• Enzymatic and Catalytic Biomass Processing

• Catalytic Synthesis and Conversion of Biomass-based Streams to Platform Molecules and Fuels

• (Bio-)refinery Process Optimization

• Injection, Ignition and Combustion of Biofuels

• Combustion Process and Exhaust Gas After treatment Optimization of Biofuels

Call for Papers: If you would like to contribute to this conference with a presentation of your work in one of the above fields, please send in a one-page summary of your topic – click here for full details on how to submit.  The deadline for submission is the 31st January 2014.

Confirmed Invited Speakers

The conference sessions will complemented by key note lectures from experts of all addressed disciplines:

• Gabriele Centi, Professor of Industrial Chemistry, University of Messina, the Netherlands

• André Faaij, Professor for Energy System Analysis, University of Utrecht, the Netherlands

• Tiziano Faravelli, Professor for Chemical Reaction Engineering and Chemical Kinetics, Politecnico di Milano, Italy

• Kohsuke Honda, Professor for Biotechnology, Osaka University, Japan

• Luuk van der Wielen, Distinguished Professor for Biobased Economy, Delft University of Technology and President of the Executive Board of BE-Basic Foundation, the Netherlands

• Marcel Wubbolts, CTO, Royal DSM, Urmond, the Netherlands

Visit the conference website for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Benign electrochemical enzymatic halogenation of terpenes

James Sherwood is a guest web-writer for Green Chemistry. James is a research associate in the Green Chemistry Centre of Excellence at the University of York. His interests range from the certification and application of bio-based products, to the understanding of solvent effects in organic synthesis.

A collaboration between scientists at Frankfurt’s DECHEMA Research Institute and the Delft University of Technology has established a biocatalytic route to make bio-based antiseptics from carvacrol and thymol. Halogenation of monoterpenes yields interesting antimicrobial compounds, some with anti-tumour activity and other desirable medicinal properties. As more is discovered about enzymatic halogenation (and significant progress on this front is only recent) it becomes increasingly viable as a benign technology for the synthesis of these important molecules.

A chloroperoxidase enzyme was used to form hypochloride from sodium chloride and hydrogen peroxide, with later experiments exploring combined electrochemical enzymatic halogenation, producing the hydrogen peroxide in situ from oxygen. The hypochloride then reacts with carvacrol or thymol to produce their respective monochloro-derivatives. For example, an ortho-chlorothymol to para-chlorothymol molar ratio of 70:30 was achieved, with yields exceeding 80% under optimised conditions.

The greenness of this methodology is apparent upon comparison to the typical reaction conditions, as highlighted by Getrey et al. and found here. In contrast to the application of copper(II) chloride as a catalyst in the chlorination of phenol derivatives with oxygen and lithium chloride, this new enzymatic process operates at a lower temperature with less catalyst, and does not require an organic solvent.

By James Sherwood

Click below to read the full article. Free to access until 8th January.

Enzymatic halogenation of the phenolic monoterpenes thymol and carvacrol with chloroperoxidase, Laura Getrey, Thomas Krieg, Frank Hollmann, Jens Schrader and Dirk Holtmann, Green Chemistry, 2014, DOI: 10.1039/C3GC42269K

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Top 10 most-accessed articles July–September 2013

The 10 most-accessed Green Chemistry articles between July and September 2013 were as follows:

Synthesis of thioesters through copper-catalyzed coupling of aldehydes with thiols in water
Chih-Lun Yi, Yu-Ting Huang and Chin-Fa Lee  
Green Chem., 2013,15, 2476-2484, DOI: 10.1039/C3GC40946E, Paper

Highly efficient iron(0) nanoparticle-catalyzed hydrogenation in water in flow
Reuben Hudson, Go Hamasaka, Takao Osako, Yoichi M. A. Yamada, Chao-Jun Li, Yasuhiro Uozumi and Audrey Moores  
Green Chem., 2013,15, 2141-2148, DOI: 10.1039/C3GC40789F, Paper 

Iodine-mediated arylation of benzoxazoles with aldehydes
Yew Chin Teo, Siti Nurhanna Riduan and Yugen Zhang  
Green Chem., 2013,15, 2365-2368, DOI: 10.1039/C3GC41027G, Communication

Polymer anchored Cu(II) complex: an efficient and recyclable catalytic system for the one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles starting from anilines in water
Susmita Roy, Tanmay Chatterjee and Sk. Manirul Islam  
Green Chem., 2013,15, 2532-2539, DOI: 10.1039/C3GC41114A, Paper

 Multicomponent reactions in unconventional solvents: state of the art
Yanlong Gu  
Green Chem., 2012,14, 2091-2128, DOI: 10.1039/C2GC35635J, Critical Review

Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation
Sarina Sarina, Eric R. Waclawik and Huaiyong Zhu  
Green Chem., 2013,15, 1814-1833, DOI: 10.1039/C3GC40450A, Tutorial Review

Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation
Jonathan G. Huddleston, Ann E. Visser, W. Matthew Reichert, Heather D. Willauer, Grant A. Broker and Robin D. Rogers  
Green Chem., 2001,3, 156-164, DOI: 10.1039/B103275P, Paper

Deconstruction of lignocellulosic biomass with ionic liquids
Agnieszka Brandt, John Gräsvik, Jason P. Hallett and Tom Welton  
Green Chem., 2013,15, 550-583, DOI: 10.1039/C2GC36364J, Critical Review

Hydrolysis of cellulose to glucose by solid acid catalysts
Yao-Bing Huang and Yao Fu  
Green Chem., 2013,15, 1095-1111, DOI: 10.1039/C3GC40136G, Tutorial Review

Catalytic conversion of biomass to biofuels
David Martin Alonso, Jesse Q. Bond and James A. Dumesic  
Green Chem., 2010,12, 1493-1513, DOI: 10.1039/C004654J, Critical Review

Take a look at the articles and then let us know your thoughts and comments below.

Fancy submitting your own work to Green Chemistry? You can submit online today, or email us with your ideas and suggestions.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Chemistry issue 12 is now available online

Issue 12 of Green Chemistry is now available to read online.

GC issue 12 OFCThe front cover this month (pictured left) features work by Peter C. K. Lau and co-workers from Quebec, Canada. In their work they engineer sinapic acid decarboxylaseas an alternative to chemistry-based or thermal decarboxylation to produce canolol from canola meal.

Read the full article:
Antioxidant canolol production from a renewable feedstock via an engineered decarboxylase
Krista L. Morley, Stephan Grosse, Hannes Leisch and Peter C. K. Lau  
Green Chem., 2013, 15, 3312-3317, DOI: 10.1039/C3GC40748A

 


GC issue 12 IFCThe inside front cover this month (pictured right) features work by Joerg Schrittwieser, Frank Hollmann and co-workers from Deltf, The Netherlands. In their work they show how the one-pot combination of alcohol dehydrogenase (ADH) and palladium nanoparticle (Pd-NP) catalysis provides access to aromatic 1,2-amino alcohols in high yields and excellent optical purities.

Read the full article:
One-pot combination of enzyme and Pd nanoparticle catalysis for the synthesis of enantiomerically pure 1,2-amino alcohols
Joerg H. Schrittwieser, Francesca Coccia, Selin Kara, Barbara Grischek, Wolfgang Kroutil, Nicola d’Alessandro and Frank Hollmann  
Green Chem., 2013, 15, 3318-3331, DOI: 10.1039/C3GC41666F

Both of these articles are free to access for 6 weeks!

Keep up-to-date-with the latest content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)