Archive for the ‘Meet our Authors’ Category

An interview with Martyn Poliakoff

Martyn Poliakoff is a Professor of Chemistry at the University of Nottingham, and the out-going Chair of the Green Chemistry Editorial Board.  As he steps down after leading the Journal for the last six years, Martyn took a few moments to talk to us about how he was inspired to become a chemist and how he sees the field of green chemistry developing in the future…

Who or what initially inspired you to become a chemist?

My father and grandfather were physicists.  From as young as I can remember, it was always assumed that I would become a scientist.  I was lucky to have inspirational physics and chemistry teachers, David Hepburn-Scott and Tony Roberts.  I was not good enough at maths to become a physicist but Tony Roberts really inspired me to focus on chemistry and I am still in contact with him nearly 50 years later.  (Find out more here)

What have you enjoyed most during your time as Chair of the Editorial Board of Green Chemistry?

I have really enjoyed meeting a variety of green chemists and also it has been a pleasure to promote the Journal across the world. 

What do you consider to be the most significant development on the Journal during your time as Chair?

I think there have been three important developments during my tenure.  Firstly, the greatly increased Impact Factor; the friendly rivalry with ChemComm has been a great spur to us all. Secondly, the increased rejection rate (including at least one paper of mine!) indicates not only that the Journal has become a more attractive place to publish but also that the standard of Green Chemistry publications is increasing.  Thirdly, the appearance of at least three new journals in this area clearly demonstrates that the foresight of the RSC in recognising the potential of green chemistry.  I am determined that our Journal shall remain the market leader.

What do you see as the biggest challenge facing the field of green chemistry?

Click here to read more…

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Meet our Authors: Francesca Kerton

Francesca Kerton is Associate Professor of Green Chemistry at the Memorial University of Newfoundland, Canada.  Her research into green chemistry encompasses three main themes: catalysis (including organometallic chemistry), solvent replacement (including supercritical fluids) and renewable feedstocks.  Fran kindly spared a few moments to chat to Green Chemistry

Who or what initially inspired you to become a chemist?

When I was very young, like many other children, I played in the garden making mud-pies and would attempt to make perfumes using the flowers there. I always liked to get my hands dirty and was a bit of a tomboy. At the root of this, I think I really wanted to understand how things worked, what they were made from and if you could turn them into something else. So in that regard, nature was my inspiration. When I was older and began secondary school, some of our first practical classes involved separations and paper chromatography. These also included looking at isolating chlorophyll and other natural products from plants. My school had excellent chemistry teachers, who would go the extra mile to explain things and challenge the bright students. Most importantly, they made what we were learning relevant to everyday life. I have very fond memories of my GCSE and A-Level Chemistry teachers, Ms. Jones and Mr. Woodstock, and they definitely inspired me to pursue a career in chemistry.

What was the motivation behind the research described in your recent Green Chemistry article?

I have been interested in ‘green’ solvents for sometime and water, ionic liquids and carbon dioxide have all been used in my group recently. I relocated to Newfoundland in Canada from the UK in 2005. In the UK, I had been involved with the Green Chemistry Group at York and had just started to perform research using renewable feedstocks to make new materials and compounds. Historically, Newfoundland had a large fishing industry and it still has a vibrant fishing community, particularly in both catching and farming shellfish. I knew that this industry would produce a number of by-products and I was particularly interested in seeing whether we could add value to these. In particular, could chitin (the biopolymer in the shells of crustaceans) be depolymerized under green conditions and produce useful compounds? We also wanted to keep things cheap and simple, therefore, we decided to look at reactions of chitin and chitosan in water using commercially available catalysts. We found that the results with chitosan were not that different to those that had been obtained using cellulose as a feedstock, namely, we obtained levulinic acid and 5-hydroxymethylfurfural as the primary products (Green Chemistry, 2012, 14, 1480-1487).  This gives me some hope that ocean-sourced biomass can be used as a feedstock in future biorefineries alongside land-sourced materials.

What do you see as the main challenges facing research in this area?

Industrial implementation of new, green ideas is of course important for the success of this field. However, this could be helped if more industries were a little more transparent and made us aware of their real problems. I think the ACS GCI pharmaceutical roundtable has helped green chemists at universities focus their attention on real rather than imagined problems. It would be great to see this approach extended to other industries including those where perhaps the beneficial role that green chemistry could play is perhaps less obvious e.g. food industry and mining industry. Also, collaboration across the sub-disciplines is really important for the development of this field.  There are some problems here, for example, the units and language used by chemical engineers is different to that used by chemists – so we need to make an effort and be patient with each other in order to solve important problems and achieve our goals.

Where do you see the field of Green Chemistry being in 5 or 10 years time?

I am an optimist and see the field growing enormously and becoming a global endeavor. I see more collaborations across disciplines and the establishment of worldwide research networks to tackle some of the key problems of sustainability such as universal access to a clean water supply.

And finally…

If you could not be a scientist, but could be anything else, what would you be?

I love music. At high school and as an undergraduate, I sang in a band. I don’t think I would have had what it takes to do that for a living but I would have liked to be involved behind the scenes in the music industry or be a promoter of shows and concerts or an event planner.

Take a look at a couple of Fran’s recent Green Chemistry articles – free to access until the 8th August:

Hydrolysis of chitosan to yield levulinic acid and 5-hydroxymethylfurfural in water under microwave irradiation, Khaled W. Omari, Jessica E. Besaw and Francesca M. Kerton, Green Chem., 2012, 14, 1480-1487

Synthesis of Pd nanocrystals in phosphonium ionic liquids without any external reducing agents, Hassan A. Kalviri and Francesca M. Kerton, Green Chem., 2011, 13, 681-686

Keep up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Meet our Authors – Andrew Abbott

Andrew Abbott is a Professor of Physical Chemistry and Head of the Department of Chemistry at the University of Leicester, UK.  His research is based on the design, fundamental studies and applications of ionic liquids and deep eutectic solvents.  Andy took a few moments to chat to Green Chemistry

Who or what initially inspired you to become a chemist?

As with most chemists, I can trace my career in Chemistry to my chemistry teacher at school, Mr David Peacock at Abbotsfield School, West London. He used to take us to all kinds of demonstration lectures and he was a great inspiration.

What has been the motivation behind your recent research?

My own research is in the area of sustainable solvents, particularly ionic liquids. I am interested in developing sustainable materials and we are focussing on metal deposition and dissolution which I feel are some of the most pressing issues in green chemistry. Reducing aqueous effluents of heavy metals are some of the most pressing issues because of the acute toxicity and large volumes of the processes. These are ubiquitous problems and all of the solutions tend to be end of pipe. Our approach is to use ionic media to avoid aqueous effluent. This also allows us to build in more energy efficient deposition processes. We have take a number of these to commercial scale. We produce our liquid systems with the catch phrase “benign by design”. We ensure that rather than looking for the perfect chemical system we start with the perfect environmental system and then tailor it to the application. Our work is also investigating novel starch based plastics building biodegradation in from the outset and attempting to modify to material to obtain the optimum mechanical properties.

What do you see as the main challenges facing research in this area?

The main challenge facing Green Chemistry is the conservative tendency in manufacturing which leads to small incremental change. The challenge from an academic point of view is retaining credibility for new technologies. We still tend to go in fads such as supercritical fluids or ionic liquids and see them as a panacea. Process design tends to be lacking from many approaches. There is also a tendency to claim that something is Green as if it is an absolute that can be achieved. We need to focus on relative improvements in green metrics.

Where do you see the field of Green Chemistry being in 5 or 10 years time?

One of the challenges in Green Chemistry over the next 10 years is retaining credibility and building successful case studies. It should be seen as a goal in all processes to improve the green metrics and it should be a key goal to develop simple criteria that are non-quantitative but are highly indicative of the relative improvements that a process makes over existing technology. A simple scale or traffic light scheme which quantified changes in key indicators such as the scale of the process, the relative change in the hazard, environmental impact, and the practicality of the methodology.

And finally…

If you could not be a scientist, but could be anything else, what would you be?

Chemistry was always my fallback position. I always wanted to be an artist and had it not been for my lack of talent I would have surely made it. Recently I fulfilled a personal challenge to combine both areas and I devised a public lecture on the chemists role in art entitled “From Test Tube to Turner” which I gave at Burlington House. Even in this lecture there is still some Green Chemistry where I discuss the chemists desire to remove toxic heavy metals from the artists palette.

A couple of Andy’s recent Green Chemistry articles are currently free to access until the 18th July 2012:

Salt modified starch: sustainable, recyclable plastics, Andrew P. Abbott, Andrew D. Ballantyne, Jesus Palenzuela Conde, Karl S. Ryder and William R. Wise, Green Chem., 2012, 14, 1302-1307

Processing of metals and metal oxides using ionic liquids, Andrew P. Abbott, Gero Frisch, Jennifer Hartley and Karl S. Ryder, Green Chem., 2011, 13, 471-481

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Meet our Authors: Michael Meier

Michael Meier is a Professor at the Karlsruhe Institute of Technology (KIT), Germany.  His research interests are utilizing plant oil derived fatty acids and terpenes etc., to prepare (novel) monomers study their subsequent polymerisation to obtain a variety of renewable polymers.  Michael took a few moments away from his work to talk to Green Chemistry

Who or what initially inspired you to become a chemist?

I was certainly inspired to become a chemist by my high-school chemistry teacher. Apart from being a great teacher in the class room, he offered voluntary lab-courses (which are still uncommon in Germany at this stage of education) and I will never forget making my first batch of Aspirin there. Without his excellent introduction to chemistry, I would probably have chosen another subject to study. Thank you Mr. Stegmüller!

What was the motivation behind the research described in your recent Green Chemistry article?

As for all research we do, our motivation is to find sustainable alternatives to existing chemistry. More importantly, we focus on a feedstock-shift from fossil resources to renewable ones. In our latest contribution, we used organocatalysis to develop new efficient procedures for the synthesis of organic carbonates and renewable polycarbonates. Catalysis is one aspect of the sustainability of this approach, but probably more important is the use of dimethyl carbonate as a non-toxic and potentially renewable alternative to phosgene for these reactions.

What do you see as the main challenges facing research in this area?

In my opinion, a major challenge will be the implementation of all the new and exciting findings that are described in the context of Green Chemistry into the chemical industry. Only then will chemistry have a chance to actually contribute to a sustainable development of our future. This is certainly one of my goals. In order to reach this, in my opinion chemistry does not only have to be sustainable, but also simple, broadly applicable and robust.

Where do you see the field of Green Chemistry being in 5 or 10 years time?

The field will definitely keep on growing. More and more research groups are joining the field, the younger generation is more aware of ecological problems and sustainability in general, and also industry has learned that sustainability often goes along with cost-savings. I thus look forward to a bright future of the field that will hopefully see many paradigm-changing and stimulating new results.

If you could not be a scientist, but could be anything else, what would you be?

If I would not be a scientist, I would probably run a coffee shop with the best cappuccino in town and homemade (organic of course) bagels and cakes. I actually thought about this option during my studies in Regensburg, because back then coffee-shops basically did not exist in Germany. But as you can guess from reading this, chemistry has won.

A couple of Michael’s recent Green Chemistry articles are currently free to access until the 2nd July 2012:

TBD catalysis with dimethyl carbonate: a fruitful and sustainable alliance, Hatice Mutlu, Johal Ruiz, Susanne C. Solleder and Michael A. R. Meier, Green Chem., 2012, 14, 1728-1735

Thiol-ene vs. ADMET: a complementary approach to fatty acid-based biodegradable polymers, Oĝuz Türünç and Michael A. R. Meier, Green Chem., 2011, 13, 314-320

Keep up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Meet our Authors: James Mack

James Mack is an Associate Professor of Chemistry at the University of Cincinnati, USA.  His current research is in the development of environmentally benign organic reactions and in particular mechano- or ball milling chemistry.  James took a few moments to speak to Green Chemistry

 Who or what initially inspired you to become a chemist?

 My parents bought me a chemistry set in grade school and I played with the set which included small experiments. I became more interested in high school chemistry. However, I knew when I took an organic chemistry sophomore year in college, that I would pursue a career in the field.

What has been the motivation behind your recent research?

When I was in graduate school I went to a seminar on Green Chemistry and thought there must be a better way to make more environmentally benign reactions. Also, chemistry should make life better for the next generation and I can be part of that change.

What do you see as the main challenges facing research in this area?

One of the challenges is explaining to world leaders that the chemical methodologies we use today will drastically impact the future. We can’t consistently borrow against the future. For example, we use resources today and hope to find alternatives tomorrow; we need to find better ways to conserve the resources we have.

Where do you see the field of Green Chemistry being in 5 or 10 years time?

In 5 to 10 years, the field will grow tremendously because students are more environmentally conscious than I was in my twenties. Green chemistry and protecting the environment is embedded in the social consciousness of today’s youth.

And finally…

If you could not be a scientist, but could be anything else, what would you be?

If I couldn’t be a chemist, my dream job would be to become the General Manager of the Boston Celtics (NBA basketball team). After all, it’s a green team! That would be magical and certainly a dream comes true! I also love to debate; therefore, pursuing a law degree would have been another great career choice.

Take a look a couple of James’ recent articles in Green Chemistryfree to access until the 19th June 2012:

Investigating the formation of dialkyl carbonates using high speed ball milling, Daniel C. Waddell, Indre Thiel, Ashley Bunger, Dominique Nkata, Ashley Maloney, Tammara Clark, Brandon Smith and James Mack, Green Chem., 2011, 13, 3156-3161

A two-step ball milling method synthesizes and purifies α,β-unsaturated esters, William C. Shearouse, Chelsea M. Korte and James Mack, Green Chem., 2011, 13, 598-601

Stay up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Meet our Authors: Pedro Lozano

Pedro Lozano in a Professor of Biochemistry and Molecular Biology at the University of Murcia, Spain.  His current research interests are related to enzyme technology with particular focus on the use of enzymes in ionic liquids and supercritical fluids.  Pedro took time out from his work to speak to Green Chemistry

Who or what initially inspired you to become a chemist?

My interest in experimental sciences began during my training at High School, which awoke my passion to know and understand all the phenomena of Nature. The choice to be a chemist was really accidental, because belonging to a family with few economic resources I had to study at the public University nearest my home, the University of Murcia. In 1979, Chemistry was the only experimental sciences degree offered this university. However, during the last two years of training in Chemistry, I chose the specialty of Biochemistry, allowing me to discover not only that the essence of life is chemistry, but also the enormous potential of applying biological systems to develop chemical processes of industrial interest in the context of Biotechnology. In fact, my PhD dealt with a cross-flow membrane reactor with immobilized pectinases to continuously produce clarified fruit juices.

What has been the motivation behind your recent research?

During the 90’s, my research was focused on the application of proteases to peptide synthesis in non-conventional media, mainly organic solvents and supercritical fluids. I came across supercritical fluids during my postdoctoral training at the Centre de Bioengenierie Gilbert Durand at Toulouse. I realized that there was a whole world to discover using biocatalytic systems in combination with these new solvents. Then by chance, in 1999 I met Dr. Michel Vaultier who was visiting the University of Murcia, and it was he who introduced me to ionic liquids. Also, the paper of Prof Joan F. Brennecke, (Nature, 1999, 399, 28-29) was a source of inspiration. Since that time, the combination of the catalytic excellence of enzymes with the unique characteristics of both supercritical fluids and ionic liquids has been a constant in my research activities. The idea of being able to perform clean and continuous catalytic processes under non-aqueous conditions using the inherent advantages of enzymes for processes of industrial interest is the final aim. At this moment, both dynamic kinetic resolutions and the enzymatic synthesis of biodiesel are the two processes under study, because of their possible application to important strategic sectors of the pharmaceutical and biofuels industries, respectively. However, the small size of our laboratory, the lack of human and material resources and an excessive teaching load are clear limitations to any research development.

What do you see as the main challenges facing research in this area?

Today, the big challenge, not only in this field, is to be able to do research in Spain in the deep economic crisis.

Outside this context, to provide a sufficiently high level of activity and stability to the enzymes to carry out synthetic processes in an overall reaction and separation approach is an important challenge. In the case of chemoenzymatic processes, it is important to have an active and selective chemical catalyst for the racemisation step, as it must also preserve (or at least, not destroy) the catalytic properties of enzymes for the kinetic resolution step. For instance, we have developed appropriate chemoenzymatic systems for the dynamic kinetic resolution of a sec-arylalcohol, but there are other sec-compounds like sec-amines, sec-thiols, etc. (in aryl and alkyl compounds), but there are many candidate reactions waiting to be studied. In the case of the enzymatic synthesis of biodiesel, our original contribution concerned the use of ILs with a large alkyl-side chain in their cations. This provides efficient monophasic reaction systems for enzyme catalysis, and opened the door to their industrial application. The full transformation of vegetable oil into biofuel molecules, without the undesirable production of glycerol is a very interesting challenge for any multicatalytic system.

Where do you see the field of Green Chemistry being in 5 or 10 years time?

The main overall challenge for the 21st century is to ensure truly sustainable development, as it is defined by the Brundtland Report, “development that meets the needs of the present without compromising the ability of future generations to meet their own need”, where the implementation of the twelve Principles of Green Chemistry, masterfully defined by Prof. Paul T. Anastas, is a good roadmap to follow. In the next 10 years, the interest of the society in green chemistry will be at its highest level, because of the profound changes that it should be occur in the chemical industry sector. Green Chemistry research should make efforts to combine selective catalysts with clean reaction media, by using sustainable approaches for product recovery and to enable the recycling/reuse of these reaction media. To transfer the exquisite efficiency shown by enzymes in nature to chemical processes may constitute the most powerful toolbox for developing a clean and sustainable chemical industry in the near future.

And finally…

If you could not be a scientist, but could be anything else, what would you be?

Really, research is vocational, and provides scientists with the enormous pleasure of having a job they enjoy. In my case, I am very lucky with my job. Furthermore, I like to work and I enjoy working…. As an undergraduate, I had many jobs during the summers to earn money to finance my studies. So, if I had not been a scientist, I do not know what other job had I would have chosen, but I am sure that it would be a job of service to society, which I would enjoy.

Take a look a couple of Pedro’s recent articles in Green Chemistryfree to access until the 22nd May 2012:

Stabilizing immobilized cellulase by ionic liquids for saccharification of cellulose solutions in 1-butyl-3-methylimidazolium chloride, Pedro Lozano, Berenice Bernal, Juana M. Bernal, Mathieu Pucheault and Michel Vaultier, Green Chem., 2011, 13, 1406-1410

An efficient activity ionic liquid-enzyme system for biodiesel production, Teresa De Diego, Arturo Manjón, Pedro Lozano, Michel Vaultier and José L. Iborra, Green Chem., 2011, 13, 444-451

Stay up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Meet our Authors: Franck Dumeignil

© CNRS Photothèque / Cyril FRESILLON

Franck Dumeignil is a Professor in the Unit of Catalysis and Solid State Chemistry at the University of Lille, France.  His research is focused on upgrading alcohols from biomass to obtain fuel, solvents and building blocks for the chemical industry, and enhancing bio-oil for energy needs.  Franck took a few moments to talk to Green Chemistry

Who or what initially inspired you to become a chemist? 

I always liked science in general – mathematics, physics and chemistry. I must confess that I was a lazy student at that time, but I could obtain nice results in chemistry without working a lot, while for mathematics I had to work a lot harder to achieve good results! That was when I decided to select chemistry as a speciality. At University we had an impressive teacher, Prof. Ginette Leclercq, who was responsible for the catalysis lectures. Thanks to her I fell in love with catalysis and became a specialist in the subject! Ironically, after my PhD thesis in France and having spent almost 7 years in Japan, I came back to France, and obtained a full professor position due to an opening available because of the retirement of none other than Prof. Leclercq! I feel this is an amazing thing in my life – I could never have expected this when I was a student following the top-quality lectures of Prof. Leclercq, while being so impressed… 

What has been the motivation behind your recent research? 

My recent research concerns catalysis for biorefineries. This is an exciting subject with so many perspectives, so many new things to discover and new processes to develop and implement! 

What do you see as the main challenges facing research in this area? 

There are multiple challenges. The molecules issued from biomass are more reactive than those issued from fossil resources. This can be seen as a decisive advantage, but when using heterogeneous catalysis, the catalysts then tend to coke much more rapidly. Furthermore, the feeds contain water, and the reactions generate water in most of the cases: what happens to the catalytic sites in these conditions? Another challenge is that the biomass-derived molecules usually contain a few different moieties, and selective attack is also an issue. 

Where do you see the field of Green Chemistry being in 5 or 10 years time? 

Green chemistry will develop and reach maturity as green metrics will be refined and become more and more reliable. What people usually need is ‘numbers’, which are much more concrete than concepts. Reliably and systematically quantifying green chemistry for any process/reaction will be a decisive advance in this field. 

And finally… 

If you could not be a scientist, but could be anything else, what would you be? 

A pianist, or a composer (not too late!), or a F1 driver, or even a squash player! My hobbies are of course in line with this!

Take a look a couple of Franck’s recent articles in Green Chemistryfree to access until the 4th May 2012:

Selective catalytic oxidation of glycerol: perspectives for high value chemicals, Benjamin Katryniok, Hiroshi Kimura, Elżbieta Skrzyńska, Jean-Sébastien Girardon, Pascal Fongarland, Mickaël Capron, Rémy Ducoulombier, Naoki Mimura, Sébastien Paul and Franck Dumeignil, Green Chem., 2011, 13, 1960-1979

Glycerol dehydration to acrolein in the context of new uses of glycerol, Benjamin Katryniok, Sébastien Paul, Virginie Bellière-Baca, Patrick Rey and Franck Dumeignil, Green Chem., 2010, 12, 2079-2098

Stay up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)