Archive for the ‘Meet our Authors’ Category

Magdalena Titirici speaks to Chemistry World about her research on biowaste conversion

Magdalena Titirici is interviewed in Chemsitry Word

Magdalena Titirici speaks to Green Chemistry Deputy Editor Anna Simpson in a recent Chemistry World interview.

Magdalena joined the School of Engineering and Materials Science at Queen Mary, University of London, UK, as a reader in materials science at the beginning of 2013. Before that, she spent over six years leading the sustainable materials for renewable energy group at the Max Planck Institute of Colloids and Interfaces in Potsdam, Germany. Research in the Titirici group involves trying to create porous carbon materials from renewable resources such as lignin, cellulose and chitin, as well municipal and agricultural wastes.

Click here to read the interview with her in Chemistry World, where she discusses her not only her research, but also her love of photography, street art and the electronic music scene!

Some of Magdalena’s most recent Green Chemistry papers are listed below. We’ve made these papers free to access for the next 2 weeks, so click on the links below to find out more about Magdalena’s research…

Original design of nitrogen-doped carbon aerogels from sustainable precursors: application as metal-free oxygen reduction catalysts, Nicolas Brun, Stephanie A. Wohlgemuth, Petre Osiceanu and Magdalena M. Titirici, Green Chem., 2013,15, 2514-2524, DOI: 10.1039/C3GC40904J

A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction, Stephanie-Angelika Wohlgemuth, Robin Jeremy White, Marc-Georg Willinger, Maria-Magdalena Titirici and Markus Antonietti, Green Chem., 2012,14, 1515-1523, DOI: 10.1039/C2GC35309A

A one-pot hydrothermal synthesis of tunable dual heteroatom-doped carbon microspheres, Stephanie-Angelika Wohlgemuth, Filipe Vilela, Maria-Magdalena Titirici and Markus Antonietti, Green Chem., 2012,14, 741-749, DOI: 10.1039/C2GC16415A

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Meet our Authors: Cinzia Chiappe

Photo of Cinzia ChiappeCinzia Chiappe is a Professor of Organic Chemistry at the University of Pisa, Italy.  Her research interests primarily focus on ionic liquids and their biological and physic chemical properties.  The ultimate goal of her research is to design optimised ionic liquids as solvents and/or catalysts for sustainable chemical reactions.  Cinzia took a few moments to chat to Green Chemistry

Who or what initially inspired you to become a chemist?

During my studies I was at first attracted by mathematics and biology and I thought I would become a “biologist”. Subsequently, in the last years of high school, my interest moved towards the single mechanisms that determine and govern the life on this planet. I discovered my interest for “molecules” and their interaction ability and so I decided to study chemistry. I therefore became an Organic Chemist.

What has been the motivation behind your recent research?

As an organic chemist, I studied reactivity and reaction mechanisms. At the beginning of this century (1999-2000), I discovered the fascinating world of ionic liquids and immediately I was attracted by these compounds for the copious challenges and potentialities that they offer to a researcher involved in “organic reactivity”. The subsequent step, from ionic liquids to “green chemistry”, was only a short step.

What do you see as the main challenges facing research in this area?

The main challenges are related to the possibility of resolving some strategic problems for this society, i.e. the depletion of our principal source of energy and organic compounds (fossil fuels) as well as the depletion of other important primary materials (some metals and metal salts).

Where do you see the field of green chemistry being in 5 or 10 years time?

I think that green chemistry and the application of its principles in different areas (energy, material sciences, waste disposal and so on) can become a strategic approach (probably, the only one) to overcome the problems characterizing this “small” planet with “many” inhabitants and “few” resources. Of course, small, many and few are strictly related quantities.

If you could not be a scientist, but could be anything else, what would you be?

I don’t know, but probably an “archistar” – a superstar architect.

Take a look at a few of Cinzia’s recent Green Chemistry articles below – all free to access:

A dramatic effect of the ionic liquid structure in esterification reactions in protic ionic media, Cinzia Chiappe, Sunita Rajamani and Felicia D’Andrea, Green Chem., 2013, 15, 137-143

Synthesis and properties of trialkyl(2,3-dihydroxypropyl)phosphonium salts, a new class of hydrophilic and hydrophobic glyceryl-functionalized ILs, Fabio Bellina, Cinzia Chiappe and Marco Lessi, Green Chem., 2012, 14, 148-155

Styrene oxidation by hydrogen peroxide in ionic liquids: the role of the solvent on the competition between two Pd-catalyzed processes, oxidation and dimerization, Cinzia Chiappe, Angelo Sanzone and Paul J. Dyson, Green Chem., 2011, 13, 1437-1441*

Keep up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts.

*Article free to access until the 13th February 2013.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Meet our Authors: François Jérôme

Picture of François JérômeFrançois Jérôme is a research director at the CNRS University of Poitiers, France.  His research is focused on the catalytic activation of biomass and the subsequent conversion of the products to value-added chemicals.  François took a few moments to chat to Green Chemistry to talk about the challenges facing this field of research…

Who or what initially inspired you to become a chemist?

When I was a kid, I was very curious and I always wanted to have a rational explanation on many natural phenomena such as volcanoes, earthquakes, storms, space, etc… Later, when I entered the University, I had the chance to attend the courses of Prof. Pierre Dixneuf. During three consecutive years, he taught me with enthusiasm and passion catalysis and organometallic chemistry. His courses really gave me the taste of chemistry.

What has been the motivation behind your recent research?

The depletion of fossil carbon reserves together with the continuous increase of the barrel price requires the society to imagine and design new and innovative strategies. In this context, fascinating works have recently been proposed that now open new fields to be explored in chemistry. In particular, the synthesis of fine chemicals and chemical platforms from non-edible resources has become a fascinating topic. Beside the green aspect of this approach, the biggest challenge faced by chemists consists in designing bio-based chemicals with superior performances than fossil-derived chemicals while respecting the essential requirements of economic competitiveness and social progress. The concept of green chemistry has dramatically changed the way we work and driven us to think about chemistry differently. In particular, the design of an atom economical or energy-saving process is not self-satisfied anymore and major other issues of green chemistry need to be addressed such as supply of renewable raw materials, structural variability of biomass, which plants for which markets, biodiversity, resource management (water, metal, carbon) and environmental impact of processes. All of these considerations are really motivating mainly because the successful design of a “green process” obviously requires close collaborations between researchers with different scientific horizons.

What do you see as the main challenges facing research in this area?

Click here to read the full interview

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Meet our Authors: Ken-ichi Shimizu

Ken-ichi Shimizu is an Associate Professor of Catalysis Research Center at Hokkaido University, Japan. His research projects focus on heterogeneous catalysis for green organic reactions and automotive emission control. Ken-ichi kindly spared Green Chemistry a few moments to talk about his work…

Who or what initially inspired you to become a chemist?

In my childhood and youth I would see my father working as an eel farmer in front of my house. Farming is a kind of empirical science for improvement of the yield and quality of the products, and a working hypothesis is refined by the accumulation of empirical facts. Until I reached undergraduate level, chemistry was not a very attractive subject for me because I could not find the concept of hypothesis in the textbook. During my master and doctoral works at Nagoya University, I discovered experimental chemistry in the field of heterogeneous catalysis. Discussions with my supervisors and students as well as the accumulation of empirical facts lead to correction or revision of the hypothesis of reaction mechanism. This experience made me a chemist.

What was the motivation behind the research described in your recent Green Chemistry article? (Green Chem., 2012, 14, 984-991)

Click here to read the full interview…

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Meet our Authors: Liang-Nian He

Liang-Nian He Liang-Nian He is a Professor at Nankai University in China.  His research interests current revolve around carbon dioxide (CO2) chemistry (capture and utilization) and sustainable synthetic chemistry.  Liang-Nian He kindly took a few moments to chat to Green Chemistry

Who or what initially inspired you to become a chemist?

The life of an academic is simple and straightforward and I enjoy working in an academic environment. I became interested in learning chemistry at the age of 12 in junior high school, which aroused my curiosity to know what happens behind such phenomena such as combustion of magnesium in oxygen, and the color change in the acid-base reaction. However, there was very little science education at that time. When I continued my college education, chemistry was taught formally, and my interest developed further. I was so fascinated by the nature of matter and had such a strong passion to understand all the interesting things in nature at the molecular level. Chemistry is such a powerful tool that can create almost anything you want. Accordingly, I definitely pursue a career in the field of chemistry when I was conscious of fundamental importance of chemistry to our society from drugs to dyes, from food to clothing.

What has been the motivation behind your recent research?

Chemical utilization of CO2 as a feedstock, promoter or reaction media for producing materials and fuels is attractive as an integral part of the carbon cycle. In particular, establishing large-scale production using CO2 in industry would be a fascinating dream for synthetic chemists. I am very grateful to Professor Toshiyasu Sakakura (National Institute of Advanced Industry Science and Technology, Japan) for introducing me to this emerging state of the art and exciting field of chemistry.

What do you see as the main challenges facing research in this area?

Click here to read more…

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Meet our Editorial Board: Walter Leitner (Chair)

Walter Leitner is a full Professor at Technische Chemie und Petrolchemie, Institut für Technische Chemie und Makromolekulare Chemie at the RWTH Aachen University and is the new Chair of the Green Chemistry Editorial Board.  As Walter takes up his new position, we asked for his thoughts on how sees the Journal, and the area of green chemistry, developing in the future…

Who or what initially inspired you to become a chemist?

I cannot fix this to a single person or event. To be honest, a large number of coincidences and external factors led me to study chemistry at Regensburg University, and it was mostly during my time as PhD-student with Henri Brunner and PostDoc with John Brown that I developed a strong research interest into catalysis and organometallic chemistry – and started to become fascinated by the idea of academic freedom!

You’ve recently been appointed as the new Chair of the Green Chemistry Editorial Board – what most excites you about the Journal?

The ever increasing scientific quality of the contributions and the incredible enthusiasm of the community – just coming back from the Green Chemistry Gordon Conference near Lucca in Italy, I am still nurtured by the same experience there!

Where would you like to see the Journal develop during your time as Chair?

Click here to read more…

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

An interview with Martyn Poliakoff

Martyn Poliakoff is a Professor of Chemistry at the University of Nottingham, and the out-going Chair of the Green Chemistry Editorial Board.  As he steps down after leading the Journal for the last six years, Martyn took a few moments to talk to us about how he was inspired to become a chemist and how he sees the field of green chemistry developing in the future…

Who or what initially inspired you to become a chemist?

My father and grandfather were physicists.  From as young as I can remember, it was always assumed that I would become a scientist.  I was lucky to have inspirational physics and chemistry teachers, David Hepburn-Scott and Tony Roberts.  I was not good enough at maths to become a physicist but Tony Roberts really inspired me to focus on chemistry and I am still in contact with him nearly 50 years later.  (Find out more here)

What have you enjoyed most during your time as Chair of the Editorial Board of Green Chemistry?

I have really enjoyed meeting a variety of green chemists and also it has been a pleasure to promote the Journal across the world. 

What do you consider to be the most significant development on the Journal during your time as Chair?

I think there have been three important developments during my tenure.  Firstly, the greatly increased Impact Factor; the friendly rivalry with ChemComm has been a great spur to us all. Secondly, the increased rejection rate (including at least one paper of mine!) indicates not only that the Journal has become a more attractive place to publish but also that the standard of Green Chemistry publications is increasing.  Thirdly, the appearance of at least three new journals in this area clearly demonstrates that the foresight of the RSC in recognising the potential of green chemistry.  I am determined that our Journal shall remain the market leader.

What do you see as the biggest challenge facing the field of green chemistry?

Click here to read more…

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Meet our Authors: Francesca Kerton

Francesca Kerton is Associate Professor of Green Chemistry at the Memorial University of Newfoundland, Canada.  Her research into green chemistry encompasses three main themes: catalysis (including organometallic chemistry), solvent replacement (including supercritical fluids) and renewable feedstocks.  Fran kindly spared a few moments to chat to Green Chemistry

Who or what initially inspired you to become a chemist?

When I was very young, like many other children, I played in the garden making mud-pies and would attempt to make perfumes using the flowers there. I always liked to get my hands dirty and was a bit of a tomboy. At the root of this, I think I really wanted to understand how things worked, what they were made from and if you could turn them into something else. So in that regard, nature was my inspiration. When I was older and began secondary school, some of our first practical classes involved separations and paper chromatography. These also included looking at isolating chlorophyll and other natural products from plants. My school had excellent chemistry teachers, who would go the extra mile to explain things and challenge the bright students. Most importantly, they made what we were learning relevant to everyday life. I have very fond memories of my GCSE and A-Level Chemistry teachers, Ms. Jones and Mr. Woodstock, and they definitely inspired me to pursue a career in chemistry.

What was the motivation behind the research described in your recent Green Chemistry article?

I have been interested in ‘green’ solvents for sometime and water, ionic liquids and carbon dioxide have all been used in my group recently. I relocated to Newfoundland in Canada from the UK in 2005. In the UK, I had been involved with the Green Chemistry Group at York and had just started to perform research using renewable feedstocks to make new materials and compounds. Historically, Newfoundland had a large fishing industry and it still has a vibrant fishing community, particularly in both catching and farming shellfish. I knew that this industry would produce a number of by-products and I was particularly interested in seeing whether we could add value to these. In particular, could chitin (the biopolymer in the shells of crustaceans) be depolymerized under green conditions and produce useful compounds? We also wanted to keep things cheap and simple, therefore, we decided to look at reactions of chitin and chitosan in water using commercially available catalysts. We found that the results with chitosan were not that different to those that had been obtained using cellulose as a feedstock, namely, we obtained levulinic acid and 5-hydroxymethylfurfural as the primary products (Green Chemistry, 2012, 14, 1480-1487).  This gives me some hope that ocean-sourced biomass can be used as a feedstock in future biorefineries alongside land-sourced materials.

What do you see as the main challenges facing research in this area?

Industrial implementation of new, green ideas is of course important for the success of this field. However, this could be helped if more industries were a little more transparent and made us aware of their real problems. I think the ACS GCI pharmaceutical roundtable has helped green chemists at universities focus their attention on real rather than imagined problems. It would be great to see this approach extended to other industries including those where perhaps the beneficial role that green chemistry could play is perhaps less obvious e.g. food industry and mining industry. Also, collaboration across the sub-disciplines is really important for the development of this field.  There are some problems here, for example, the units and language used by chemical engineers is different to that used by chemists – so we need to make an effort and be patient with each other in order to solve important problems and achieve our goals.

Where do you see the field of Green Chemistry being in 5 or 10 years time?

I am an optimist and see the field growing enormously and becoming a global endeavor. I see more collaborations across disciplines and the establishment of worldwide research networks to tackle some of the key problems of sustainability such as universal access to a clean water supply.

And finally…

If you could not be a scientist, but could be anything else, what would you be?

I love music. At high school and as an undergraduate, I sang in a band. I don’t think I would have had what it takes to do that for a living but I would have liked to be involved behind the scenes in the music industry or be a promoter of shows and concerts or an event planner.

Take a look at a couple of Fran’s recent Green Chemistry articles – free to access until the 8th August:

Hydrolysis of chitosan to yield levulinic acid and 5-hydroxymethylfurfural in water under microwave irradiation, Khaled W. Omari, Jessica E. Besaw and Francesca M. Kerton, Green Chem., 2012, 14, 1480-1487

Synthesis of Pd nanocrystals in phosphonium ionic liquids without any external reducing agents, Hassan A. Kalviri and Francesca M. Kerton, Green Chem., 2011, 13, 681-686

Keep up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Meet our Authors – Andrew Abbott

Andrew Abbott is a Professor of Physical Chemistry and Head of the Department of Chemistry at the University of Leicester, UK.  His research is based on the design, fundamental studies and applications of ionic liquids and deep eutectic solvents.  Andy took a few moments to chat to Green Chemistry

Who or what initially inspired you to become a chemist?

As with most chemists, I can trace my career in Chemistry to my chemistry teacher at school, Mr David Peacock at Abbotsfield School, West London. He used to take us to all kinds of demonstration lectures and he was a great inspiration.

What has been the motivation behind your recent research?

My own research is in the area of sustainable solvents, particularly ionic liquids. I am interested in developing sustainable materials and we are focussing on metal deposition and dissolution which I feel are some of the most pressing issues in green chemistry. Reducing aqueous effluents of heavy metals are some of the most pressing issues because of the acute toxicity and large volumes of the processes. These are ubiquitous problems and all of the solutions tend to be end of pipe. Our approach is to use ionic media to avoid aqueous effluent. This also allows us to build in more energy efficient deposition processes. We have take a number of these to commercial scale. We produce our liquid systems with the catch phrase “benign by design”. We ensure that rather than looking for the perfect chemical system we start with the perfect environmental system and then tailor it to the application. Our work is also investigating novel starch based plastics building biodegradation in from the outset and attempting to modify to material to obtain the optimum mechanical properties.

What do you see as the main challenges facing research in this area?

The main challenge facing Green Chemistry is the conservative tendency in manufacturing which leads to small incremental change. The challenge from an academic point of view is retaining credibility for new technologies. We still tend to go in fads such as supercritical fluids or ionic liquids and see them as a panacea. Process design tends to be lacking from many approaches. There is also a tendency to claim that something is Green as if it is an absolute that can be achieved. We need to focus on relative improvements in green metrics.

Where do you see the field of Green Chemistry being in 5 or 10 years time?

One of the challenges in Green Chemistry over the next 10 years is retaining credibility and building successful case studies. It should be seen as a goal in all processes to improve the green metrics and it should be a key goal to develop simple criteria that are non-quantitative but are highly indicative of the relative improvements that a process makes over existing technology. A simple scale or traffic light scheme which quantified changes in key indicators such as the scale of the process, the relative change in the hazard, environmental impact, and the practicality of the methodology.

And finally…

If you could not be a scientist, but could be anything else, what would you be?

Chemistry was always my fallback position. I always wanted to be an artist and had it not been for my lack of talent I would have surely made it. Recently I fulfilled a personal challenge to combine both areas and I devised a public lecture on the chemists role in art entitled “From Test Tube to Turner” which I gave at Burlington House. Even in this lecture there is still some Green Chemistry where I discuss the chemists desire to remove toxic heavy metals from the artists palette.

A couple of Andy’s recent Green Chemistry articles are currently free to access until the 18th July 2012:

Salt modified starch: sustainable, recyclable plastics, Andrew P. Abbott, Andrew D. Ballantyne, Jesus Palenzuela Conde, Karl S. Ryder and William R. Wise, Green Chem., 2012, 14, 1302-1307

Processing of metals and metal oxides using ionic liquids, Andrew P. Abbott, Gero Frisch, Jennifer Hartley and Karl S. Ryder, Green Chem., 2011, 13, 471-481

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Meet our Authors: Michael Meier

Michael Meier is a Professor at the Karlsruhe Institute of Technology (KIT), Germany.  His research interests are utilizing plant oil derived fatty acids and terpenes etc., to prepare (novel) monomers study their subsequent polymerisation to obtain a variety of renewable polymers.  Michael took a few moments away from his work to talk to Green Chemistry

Who or what initially inspired you to become a chemist?

I was certainly inspired to become a chemist by my high-school chemistry teacher. Apart from being a great teacher in the class room, he offered voluntary lab-courses (which are still uncommon in Germany at this stage of education) and I will never forget making my first batch of Aspirin there. Without his excellent introduction to chemistry, I would probably have chosen another subject to study. Thank you Mr. Stegmüller!

What was the motivation behind the research described in your recent Green Chemistry article?

As for all research we do, our motivation is to find sustainable alternatives to existing chemistry. More importantly, we focus on a feedstock-shift from fossil resources to renewable ones. In our latest contribution, we used organocatalysis to develop new efficient procedures for the synthesis of organic carbonates and renewable polycarbonates. Catalysis is one aspect of the sustainability of this approach, but probably more important is the use of dimethyl carbonate as a non-toxic and potentially renewable alternative to phosgene for these reactions.

What do you see as the main challenges facing research in this area?

In my opinion, a major challenge will be the implementation of all the new and exciting findings that are described in the context of Green Chemistry into the chemical industry. Only then will chemistry have a chance to actually contribute to a sustainable development of our future. This is certainly one of my goals. In order to reach this, in my opinion chemistry does not only have to be sustainable, but also simple, broadly applicable and robust.

Where do you see the field of Green Chemistry being in 5 or 10 years time?

The field will definitely keep on growing. More and more research groups are joining the field, the younger generation is more aware of ecological problems and sustainability in general, and also industry has learned that sustainability often goes along with cost-savings. I thus look forward to a bright future of the field that will hopefully see many paradigm-changing and stimulating new results.

If you could not be a scientist, but could be anything else, what would you be?

If I would not be a scientist, I would probably run a coffee shop with the best cappuccino in town and homemade (organic of course) bagels and cakes. I actually thought about this option during my studies in Regensburg, because back then coffee-shops basically did not exist in Germany. But as you can guess from reading this, chemistry has won.

A couple of Michael’s recent Green Chemistry articles are currently free to access until the 2nd July 2012:

TBD catalysis with dimethyl carbonate: a fruitful and sustainable alliance, Hatice Mutlu, Johal Ruiz, Susanne C. Solleder and Michael A. R. Meier, Green Chem., 2012, 14, 1728-1735

Thiol-ene vs. ADMET: a complementary approach to fatty acid-based biodegradable polymers, Oĝuz Türünç and Michael A. R. Meier, Green Chem., 2011, 13, 314-320

Keep up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)