Archive for the ‘Hot Article’ Category

Systematic optimization of a biocatalytic two-liquid phase oxyfunctionalization process guided by ecological and economic assessment

Scientists from Germany have optimized and assessed the ecological performance of a whole-cell two-liquid phase biocatalytic epoxidation of styrene.

Bruno Bühler and colleagues from the Technical University of Dortmund and Saarland University, Germany, considered how the ecological aspects of this reaction could be improved.  Currently, the ecological performance is hampered by the organic carrier solvent employed (bis(2-ethylhexyl)phthalate) which is toxic to humans and is produced from non-renewable resources.  Instead ethyl oleate (a biodiesel constituent) was tested and shown to be an environmentally attractive and cost-competitive solvent.

The authors also replaced the carbon/energy source glucose with glycerol as the latter is a waste product from the biodiesel and soap industries and thus cheap and abundant.  However, the use of glycerol was found to reduce the overall ecological and economic performance of the process.  The work presented here by Bühler and co-workers illustrates the capability of these assessments to identify critical process parameters and to enable systematic development towards industrial implementation.

This article is free to access until the 24th February 2012!  Click on this link below to find out more…

Systematic optimization of a biocatalytic two-liquid phase oxyfunctionalization process guided by ecological and economic assessment, Daniel Kuhn, Mattijs K. Julsing, Elmar Heinzle and Bruno Bühler, Green Chem., 2012, DOI: 10.1039/C2GC15985F

You may find this article of interest too – also free to access until the 24th February 2012, so why not take a look…

Intensification and economic and ecological assessment of a biocatalytic oxyfunctionalization process, Daniel Kuhn, Muhammad Abdul Kholiq, Elmar Heinzle, Bruno Bühler and Andreas Schmid, Green Chem., 2010, 12, 815-827

Keep up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Tailor-made biopolymers from leather waste valorisation

Scientists from Spain report tailor-made collagen biopolymers from tanning waste with diverse shapes such as fibers, films and sponges. 

Mercedes Catalina (Advanced Chemistry Institute of Catalunya), Rafael Luque (University of Cordoba) and colleagues valorised tanning waste from leather processing to give biopolymers which could be easily modified using various methodologies with the aim of generating waste-derived renewable biopolymers.  For example, introducing cross-linking agents on the  matrix network of the biopolymer provided a material with improved properties.  The authors envisage these materials could have promising in fields such as cosmetics and medicines.

This article is free to access until the 18th February 2012! Click on the link below to find out more…

Tailor-made biopolymers from leather waste valorisation, Mercedes Catalina, Jaume Cot, Alina Mariana Balu, Juan Carlos Serrano-Ruiz and Rafael Luque, Green Chem., 2012, DOI: 10.1039/C2GC16330F

You may find this review article of interest too which is also free to access.  Why not take a look…

Waste materials – catalytic opportunities: an overview of the application of large scale waste materials as resources for catalytic applications, M. Balakrishnan, V. S. Batra, J. S. J. Hargreaves and I. D. Pulford, Green Chem., 2011, 13, 16-24

Keep up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Linseed and soybean oil-based polyurethanes prepared via the non-isocyanate route and catalytic carbon dioxide conversion

Soy- and linseed oil-based polyurethanes were synthesized by curing carbonated soybean and linseed oils with different diamines. 

Moritz Bähr and Rolf Mülhaupt from the Freiburg Materials Research Center (FMF) and Department of
Macromolecular Chemistry, Germany, have developed a non-isocyante route to soy- and linseed oil-based polyurethanes.  The route involved conversion of the epoxidised seed oils with carbon dioxide to form cyclic carbonates catalysed by tetra-butylammonium bromide and silica supported 4-pyrrolidinopyridium iodide.  The catalysts could be easily recovered without needing traditional solvent extraction.  The resulting carbonates were then cured with various amines to give the polyurethanes.

As well as avoiding the use of toxic chemicals, this route also led to some polkyurethanes with increased glass transition temperatures and improved stiffness.  To find out more, just click on the article link below.  This article is currently free to access until the 15th February 2012!

Linseed and soybean oil-based polyurethanes prepared viathe non-isocyanate route and catalytic carbon dioxide conversion, Moritz Bähr and Rolf Mülhaupt, Green Chem., 2012, DOI: 10.1039/C2GC16230J

You may also find these articles of interest – free to access until the 15th February 2012 too!  So why not take a look…

Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid, Laurent Mialon, Alexander G. Pemba and Stephen A. Miller, Green Chem., 2010, 12, 1704-1706

Vegetable oil-based polymeric materials: synthesis, properties, and applications, Ying Xia and Richard C. Larock, Green Chem., 2010, 12, 1893-1909

Keep up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Chemistry article in C&EN

A recently published Green Chemistry aricle by David Cole-Hamilton (University of St. Andrews, UK), Stefan Mecking (University of Konstanz, Germany) and colleagues has just been featured in the latest issue of Chemistry & Engineering News (C&EN). 

The paper reports the synthesis of the diester dimethyl 1,19-nonadecanedioate from the palladium catalysed methoxycarbonylation of various commerial oils, including olive and sunflower oils.  The resulting product can then be easily converted to the diol and diacid, and all three chemicals can serve as useful polymer precursors. 

This article is now free to access until the 15th February 2012!  Click the link below to find out more…

Polymer precursors from catalytic reactions of natural oils, Marc R. L. Furst, Ronan Le Goff, Dorothee Quinzler, Stefan Mecking, Catherine H. Botting and David J. Cole-Hamilton, Green Chem., 2012, DOI: 10.1039/C1GC16094J

Keep up-to-date with the latest content in Green Chemistry by registering for our free table of contents alerts!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot articles in ‘green’ organic synthesis

Read about our latest hot articles in green organic synthesis…

Martin Kluge and colleagues from the International Graduate School of Zittau and Lausitz University of Applied Sciences, Germany, report the stereoselective benzylic hydroxylation of alkybenzenes and epoxidation of styrene derivatives catalysed by the peroxygenase from the fungus Agrocybe aegerita.  This method avoids the use of transition metal catalysts and harsh reactions conditions present in other methods.  By using fed-batch devices and varying feeding strategies for the substrates, the Kluge and co-workers developed a suitable approach to optimize peroxygenase catalysis.

Antonio Braga and colleagues from the Federal University of Santa Catarina and the Federal University of Santa Maria, Brazil, report the synthesis of selenol esters from diorganyl diselenides and acyl cholrides under solvent-free conditions and microwave irradiation.  They describe an efficient, fast and eco-friendly method for the synthesis of selenol esters, which provided good to excellent yields of the products after just two minutes of microwave irradiation. 

Read these articles for free until 11th February 2012!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Perspective: How do the fine chemical, pharmaceutical, and related industries approach green chemistry and sustainability?

In this Perspective article, William Watson, Scientific Update LLP, UK, looks at the approach of companies within the chemical, pharmaceutical and related industries to green chemistry and sustainability, and examines how much variation exists from company to company.

The study approached several companies from across the sector and included 11 ‘big pharma’ companies, 6 ‘other pharma’ companies and 4 non-phrama companies who agreed to take part in the survey.  The survey itself looked at green chemistry and sustainability policies and policy implementation, process metrics, green chemistry and technologies and how the application of the green chemistry principles changes throughout the various stages of development.

The study highlights that the overall picture across the sector is very varied, with a few companies clearly leading the field and some slower to introduce or highlight green issues than others.  However, all companies try to use green solvents where possible and avoid using solvents like dichloromethane.

This article is now free to access until the 3rd February 2012!  Click the link below to find out more…

How do the fine chemical, pharmaceutical, and related industries approach green chemistry and sustainability?, William J. W. Watson, Green Chem., 2012, DOI: 10.1039/C1GC15904F

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A quantitative comparison between conventional and bio-derived solvents from citrus waste in esterification and amidation kinetic studies

(R)-(+)-Limonene and its close derivative p-cymene has been shown to be viable yet sustainable alternative solvents for amidation and esterification reactions. 

James Clark and colleagues from the University of York, UK report the use of bio-derived solvents from citrus waste and their application in some organic reactions.  Approximately 15 million tons of citrus waste is generated annually, but it is usually disposed of or incorporated into animal feed.  However, this waste material provides excellent opportunities to obtain useful and/or valuable chemicals.  Here, limonene obtained directly from citrus wastes, and p-cymene which can be synthesised easily from waste biomass, have been shown to be viable alternatives to conventional solvents in esterification and amidation reactions. 

This article is free to access until the 16th January 2012!  Click the link below to find out more…

A quantitative comparison between conventional and bio-derived solvents from citrus waste in esterification and amidation kinetic studies, James H. Clark, Duncan J. Macquarrie and James Sherwood, Green Chem., 2012, DOI: 10.1039/C1GC16299C

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Liquid hydrocarbon fuels from cellulosic feedstocks via thermal deoxygenation of levulinic acid and formic acid salt mixtures

US scientists have developed a route to produce liquid hydrocarbon fuels in high yields from cellulosic feedstocks.

Conversion of cellulosic feedstocks into liquid hydrocarbon transportation fuels could have a large impact on supplying our future energy needs.  However, at present two barriers hinder it’s commercial implementation; first, the high cost per unit product as the feedstock energy feed rate is much smaller than in the petroleum industry; and secondly, the high operating cost to convert cellulosic material into energy dense biofuels partly due to the high cost of removing oxygen from the biomass. 

In this work, Clayton Wheeler and colleagues from the Bioproducts Research Institute at the University of Maine, USA have used formic acid as a hydrogen source in the thermal deoxygenation of levulinic acid, giving high yields of deoxygenated hydrocarbons.  This methods has significant advantages, providing a high-yield, robust, low-pressure, non-catalytic route to hydrocarbon mixtures from biomass, which are similar to petroleum crude oils.

This article is free to access until the 6th January 2012!  Click below to find out more…

Liquid hydrocarbon fuels from cellulosic feedstocks viathermal deoxygenation of levulinic acid and formic acid salt mixtures, Paige A. Case, Adriaan R. P. van Heiningen and M. Clayton Wheeler, Green Chem., 2012, DOI: 10.1039/C1GC15914C

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A simple direct phosgeneless route to N-heteroaryl unsymmetrical ureas

Scientists from Italy have developed a simple and green approach to the synthesis of N-heteroaryl unsymmetrical ureas avoiding the use of phosgene.

N-heteroaryl unsymmetrical ureas are widely used as synthetic intermediates and usually possess biological activityor interesting pharmacological properties.  However, traditional methods used to synthesis these compounds usually involve phosgene or phosgene-derivatives, a toxic and harmful reagent on which government policies are placing larger constraints on its usage for environmental protection.

In this work, Eugenio Quaranta and co-workers have developed a route to N-heteroaryl unsymmetrical ureas via the reaction of N-phenoxycarbonyl derivatives of pyrrole, indole and carbazole with amines.  The reaction can be catalyzed by DBU under mild conditions providing the desired target molecules in good yields, avoiding traditional multistep procedures and without using phosgene or its derivatives.

This article is free to access until the 6th January 2012!  Click below to find out more…

A simple direct phosgeneless route to N-heteroaryl unsymmetrical ureas, Marianna Carafa, Valentina Mele and Eugenio Quaranta, Green Chem., 2012, DOI: 10.1039/C1GC15984D

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Electrostatic immobilization of an olefin metathesis pre-catalyst on iron oxide magnetic particles

Andrea Robinson and colleagues from Monash University, Australia, have developed an immobilized catalyst for ring closing metathesis (RCM) of olefins allowing for easy removal and recovery of the catalyst. 

A quaternary ammonium Hoveyda-Grubbs metathesis pre-catalyst was made in one step from the commercially available second generation Grubbs catalyst, before electrostatic immobilization onto magnetic iron oxide particles.  The resulting catalyst provided pseudo-homogeneous reactivity but coupled with an easy recovery option.  The catalyst could simply be magnetically retrieved from the reaction media and the catalyst reused up to six times.

This article is free to access until the 23rd December 2011!  Click on the link below to find out more…

Electrostatic immobilization of an olefin metathesis pre-catalyst on iron oxide magnetic particles, Matthew J. Byrnes, Andrew M. Hilton, Clint P. Woodward, William R. Jackson and Andrea J. Robinson, Green Chem., 2012, DOI: 10.1039/C1GC16084B

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)