Archive for the ‘Article collections’ Category

Celebrating Latin American Chemistry

The Royal Society of Chemistry is delighted to support @LatinXChem, a virtual forum through which the community of Latin American chemists located anywhere in the world can share and discuss their research results and advances. As part of our partnership with this event, several of our journals are part of this cross journal themed collection, that intends to celebrate the excellence and breadth of Latin American research achievements across the chemical sciences.

More information and how to register for the 2024 event can be found here: https://www.latinxchem.org/

All papers included in this themed collection were personally selected by our Guest Editors:


Alan Aguirre Soto
Tecnológico de Monterrey,
Mexico

Joaquín Barroso
Universidad Nacional Autónoma de México,
Mexico

Francisca J. Benitez
Pontificia Universidad Católica de Chile,
Chile

Adrián Bonilla Petriciolet
Instituto Tecnologico de Aguascalientes,
Mexico

Luis Briceño Mena
Dow Chemical Company,
United States

Yamil Colón
University of Notre Dame,
United States

Maria A. Fernández-Herrera
Centro de Investigacion y de Estudios Avanzados, Unidad Mérida,
Mexico

Areli Flores
Universidad Militar Nueva Granada,
Colombia

Diego Gamba-Sánchez
Universidad de los Andes,
Colombia

Laura Hinojosa-Reyes
Universidad Autónoma de Nuevo León,
Mexico

Ilich A. Ibarra
Universidad Nacional Autonoma de Mexico,
Mexico

Carlos Martínez-Huitle
Universidade Federal do Rio Grande do Norte,
Brazil

Miguel Méndez
Universidad de las Americas Puebla,
Mexico

Gabriel Merino
Centro de Investigacion y de Estudios Avanzados, Unidad Mérida,
Mexico

Elisa Orth

Universidade Federal do Parana,
Brazil

Braulio Rodríguez-Molina
Universidad Nacional Autonoma de Mexico,
Mexico

Liliana Quintanar
Centro de Investigacion y de Estudios Avanzados, Unidad Zacatenco,
Mexico

Galo Soler
Universidad Nacional de General San Martín,
Argentina

Juliana Vidal
Beyond Benign,
United States

Aldo Zarbin
Universidade Federal do Parana,
Brazil
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Chemistry 25th Anniversary Collection: The need for hotspot-driven research

Over the past 25 years, Green Chemistry has provided a unique forum for the publication of innovative research on the development of alternative sustainable technologies, efficient utilisation of resources and the concomitant minimisation of waste. We are delighted to bring together as very special issue containing articles by members of the green chemistry community as well as past and present Green Chemistry Board members, to mark and celebrate our first 25 years.

Among the contributions to this themed collection is a perspective article on the need for hotspot-driven research (DOI: 10.1039/D3GC03601D) co-authored by Philip Jessop (Green Chemistry’s former Chair) and Alex R. MacDonald. The authors define a hotspot as a chemical, process step, or life stage that causes more harm than the others (whether considering global warming, ecotoxicity, or resource consumption). For example, during the life cycle of beer, more global warming is caused by the manufacturing of the glass bottle than the agriculture, beer production, transport, and waste management steps combined.  Thus, making the bottle is the global warming hotspot.

In this perspective the authors explain the need for greater utilization of life cycle assessments (LCA) of existing processes to identify the hotspots and for that identification to be the driver for the selection of new research projects and directions.

Greening a step in a process, without checking whether it is a hotspot, may still lead to environmental harm reduction but the benefit of green chemistry research will be greater if we direct our efforts towards hotspots”.

However, the most challenging aspect of this strategy for green chemistry is identifying the most harmful step in a process, the hotspot. LCA is the best way to identify the hotspot, but few chemists are trained to do LCA and it’s far from trivial to learn. The most exciting aspect is the growing availability of LCA data. As LCA studies become more common, it will become easier for green chemists to identify hotspots and choose to fix them. Hotspot-driven research will maximize the environmental benefit of green chemistry research

Read our interview with Philip Jessop Below.

Could you briefly explain the focus of your article to the non-specialist?

Green chemistry researchers want to use their time and skills to make products greener, but don’t have the time to solve everything. Researchers must therefore focus their work on the most harmful parts of a process or product. That means researchers must first identify which parts are the most harmful before deciding what to work on.

How would you set this article in a wider context?

Everybody wants to have greener products. Society expects scientists and engineers to improve the way products are made in order to reduce environmental harm. However, research itself takes time and money, and contributes to harm. Therefore, researchers must be careful to choose projects that have the maximum likely benefit.

 

 

What is the motivation behind this work?

Frustration. The effort being put into green chemistry by the global research community is wonderful to see, but a lot of research, including some of my own, has been aimed at solving very minor problems. For example, if the manufacture of a product takes 12 steps from mining to retail, and 99% of the environmental harm comes from step #4, then any effort to make step #6 greener is unlikely to lead to environmental benefit. Just as bad is any attempt to make a step greener without checking to see if it’s the most harmful step.

What is the next step? What work is planned? 

The idea of hotspot-directed research will, at least at my university and hopefully at others, become part of green chemistry education. Also, I’m writing a book to help the public understand how they, as consumers, can choose the greenest options in their shopping and how they can identify the hotspots in their own lifestyles.

Please describe your journey to becoming part of the Green Chemistry community 

I’ve been publishing green chemistry research since 1994 but my first paper published in the journal Green Chemistry was in 2003. That was the first of 40. I joined the editorial board in 2014 and chaired the editorial board 2017-2022.

Why did you choose to publish in Green Chemistry?

Even today, with the millions of competing journals, Green Chemistry is the flagship journal for the field. When I have a paper that I believe would be valuable for the green chemistry community, this journal is my first choice of venue to reach that audience.

What do you think the Green Chemistry journal has done well in the past 25 years, and what do you think are the main challenges our community will face in the next 25 years? 

The field of green chemistry is growing up, but during its childhood it was constantly changing. The journal has changed as well in order to best serve the community’s changing needs. At the beginning, discussion was needed so that the community could come together, and the journal delivered that. As the field matured, informal discussion was dropped in favour of refereed perspectives papers. In the past few years, the emphasis has shifted again, to favouring, and in fact requiring, papers with better discussion of the environmental advantages and disadvantages of new chemistries. In the future, the journal will have to continue to change with the times because of new trends that are shaping the field and therefore shaping how research is done and reported. New trends include computer-aided design, AI, LCA use at all stages of research, social LCA, and hotspot-driven research.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Call for Papers: Make polymers sustainable, why and how?

Green Chemistry and Polymer Chemistry are delighted to announce a call for papers to the Make polymers sustainable, why and how? cross journal Themed Collection, Guest Edited by Maiyong Zhu (Jiangsu University), Gerard Lligadas (Universitat Rovira i Virgili), Fiona L. Hatton (Loughborough University), Garret Miyake (Colorado State University), and Antoine Buchard (University of York).

About this Themed Collection

It is estimated that more than 300 million tons of synthetic polymeric materials are being produced every year and most are made from petroleum-based feedstocks. As the global consumption of polymers increases each year, this puts an unsustainable demand on our finite and non-renewable fossil fuel resources. In addition, the ever-growing quantity of polymers becoming waste at the end of their life presents serious environmental problems due to their persistence and potential ecotoxicity. This themed collection will showcase cutting-edge research and advancements in developing more sustainable methods to tackle these global challenges.

Great achievements have been made so far, including alternative renewable monomers derived from biomass, synthetic biodegradable polymers, and synthetic processes, such as those using molten salts, deep eutectic solvents, ionic liquids, and high-performance catalysts have shown great energy efficiency during the production of polymers. Additionally, the emergence and wide interest for circular economy principles have promoted research into the recycling (including chemical) of polymers, adding value to post-consumed polymers. Furthermore, artificial intelligence and machine learning have been offering new powerful tools for scientists and engineers to guide the design and synthesis of novel polymers, as well as to predict their properties, in order to efficiently meet the requirements for a sustainable development.

Preferred topics include but are not limited to:

  • Green synthetic approaches to polymers
  • Polymers derived from renewable monomers/feedstock
  • Polymers from agricultural waste
  • Bio-based vitrimers, thermosets and resins
  • Life cycle analysis of polymers
  • Polymers recycling to monomer or materials with equivalent function
  • Upcycling end-of-life polymers
  • Machine learning for sustainable polymers
  • Ecotoxicity and toxicity of bio-derived polymers

Open for Submissions until 31st May 2025

This call for papers is open for the following article types:

  • Communications
  • Full papers
  • Reviews

How to Submit

If you would like to contribute to this themed collection, you can submit your article directly to the online submission system for Green Chemistry or Polymer Chemistry. Please answer the themed collection question in the submission form when uploading your files to say that this is a contribution to the Make polymers sustainable, why and how? themed collection.

Please note that while we welcome submissions to Green Chemistry and Polymer Chemistry, we are unable to guarantee peer review or eventual acceptance in your chosen journal. If a submission is not found to be suitable for the chosen journal, we will endeavour to find the most suitable home within our portfolio of journals.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Measuring Green Chemistry: Methods, Models, and Metrics

 

Green Chemistry, Reaction Chemistry & Engineering, Energy & Environmental ScienceChem Soc Rev and Analytical Methods are delighted to present their most recent post publication Themed Collection ➡Measuring Green Chemistry: Methods, Models, and Metrics

This cross-journal-themed collection showcases selected examples aiming to quantify the benefits and trade-offs of green chemistry by providing assessment methods, models, indicators, and metrics. The collection is intended as a guide and accessible resource for the whole chemical community while helping authors to measure, compare, and describe the advantages and disadvantages of introducing green chemistry principles and approaches in their work.

All papers included were personally selected by Green Chemistry’s Board Members André Bardow (ETH Zürich) and Serenella Sala (European Commission – Joint Research Centre), Green Chemistry’s Associate Editor Luigi Vaccaro (Università degli Studi di Perugia) and Green Chemistry’s Chair Javier Pérez-Ramírez (ETH Zürich)

The collection includes, but is not limited to, examples of application of green chemistry principles as well as methods for measuring their efficacy in improving chemicals or in selecting a preferred alternative, such as E factor, green analytical procedure Index (GAPI) processes, process mass intensity, eco-scale, techno-economic analysis, life-cycle assessment, carbon balance analysis. The collection entails example of application of individual metrics and indicators as well as multicriteria assessment and addresses as well green chemistry education.

Read the full collection: https://rsc.li/measuringgchem

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Call for Papers: Green and Sustainable Batteries

Green Chemistry, Journal of Material Chemistry A, Sustainable Energy & Fuels and RSC Sustainability are delighted to announce a call for paper for their latest cross journal themed collection on Green and Sustainable Batteries, Guest Edited by Magda Titirici (Imperial College London), Rebeca Marcilla (IMDEA Energy Institute), Cristina Pozo-Gonzalo (Institute of Carboquimica ICB-CSIC) and Theresa Schoetz (University of Illinois at Urbana-Champaign).

About this Themed Collection

This themed collection will showcase cutting-edge research, advancements, and remaining challenges in realising the holy grail of batteries: sustainable batteries that balance performance, cost and environmental sustainability.  The collection aims to uncover new research opportunities in this field by featuring multidisciplinary research on alternative battery chemistries,  sustainable electrolytes, sustainability assessment (including assessing materials criticality and its environmental impact), battery recycling, electrodes manufacturing for improved performance, understanding and preventing degradation and improving life time, design for disassembly and technoeconomic assessment among other topics closely fitting to the sustainable battery topic.

Preferred topics include but are not limited to:

  • Alternative battery chemistries to Li including but not limited to Na, K, Al, Zn, dual ion, proton or organic batteries etc
  • Li based batteries using non-critical materials to include but not limited to alternative anodes to graphite based on abundant elements and critical metal free cathodes including sulfur, air, etc
  • High energy density batteries without excess of Li also known under the more popular name of “anode-free” or “anodeless” batteries, where the amount of Li is reduced while ideally addressing the sustainability of all other components.
  • Sustainable electrolytes, including but not limited to concentrated water in salt electrolytes, sustainable (bio)polymer-based electrolytes, ionic liquids, deep eutectic solvents, new organic solvents/salt electrolyte design, solid electrolytes without critical metals.
  • Life cycle assessment studies of Li and other battery technologies, ideally not only from a global warming perspective but also with impact on ecosystems, biodiversity, water pollution and human rights
  • Assessment of metal criticality for battery research, including but not limited to a definition of criticality, geopolitical factors, and comparison of different geographic regions.
  • Techno economic analysis of batteries; Does more sustainable means more expensive and what are needed mitigation strategies for lowering the cost of new battery technologies?
  • Manufacturing for disassembly from cell to pack level. What options are there to move away from the current unsustainable manufacturing practices?
  • Electrode design for improved performance and sustainability including but not limited to new electrodes design, current collector free electrodes, dry electrode manufacturing, nontoxic solvents and binders, tick/thin electrodes, etc
  • Understanding the degradation of sustainable batteries using in operando characterisation
  • Improving battery lifetime, for example using sensors and self-healing battery components
  • Industrial perspective on creating the next generation sustainable batteries.
  • Battery recycling of Li ion technologies but also of merging battery technologies
  • Other innovative technical strategies for sustainable batteries

This call for papers is open for the following article types:

  • Communications
  • Full papers
  • Reviews

About the journals

The following RSC journals are supporting the collection:

  • Green Chemistry – A multidisciplinary journal providing a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies that is likely to be of wide general appeal
  • Journal of Material Chemistry A – A high quality journal Publishing work of international significance on all aspects of materials chemistry related to energy and sustainability.
  • Sustainable Energy & Fuels – An interdisciplinary journal publishing high quality scientific research that will drive the development of sustainable energy technologies, with a particular emphasis on innovative concepts and approaches.
  • RSC Sustainability – An inclusive journal publishing solutions-focused research dedicated to solving sustainability challenges

How to Submit

If you would like to contribute to this themed collection, you can submit your article directly to the online submission system for Green Chemistry, Journal of Material Chemistry A, Sustainable Energy & Fuels or RSC Sustainability. Please answer the themed collection question in the submission form when uploading your files to say that this is a contribution to the Green and Sustainable Batteries Themed Collection

Open for Submissions until 31st March 2025

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Featuring our paper: “The sustainability impact of Nobel Prize Chemistry: life cycle assessment of C–C cross-coupling reactions”

Published in Issue 25 and highlighted by Prof. Javier Pérez-Ramírez (Editorial Board Chair) and Dr. Michael Rowan (Executive Editor) for inclusion in our 25th Anniversary Collection, “The sustainability impact of Nobel Prize Chemistry: life cycle assessment of C–C cross-coupling reactionspaper is already receiving a great deal of attention in the community (DOI: 10.1039/D3GC01896B).

The paper presents a comprehensive study based on life cycle assessment (LCA) to evaluate the environmental profiles of carbon-carbon cross-coupling reaction (CCR) in terms of the materials involved and their energy consumption.

Cross-coupling reaction protocols are among the most important reactions for the synthesis of building blocks, and their great significance led to them being awarded the Nobel Prize in 2010. The objectives and value of this study were to evaluate the intrinsic potential of CCR protocols through LCA-based environmental assessment and to demonstrate that creation of large initial innovation likely multiplies to massive literature impact in the years after. The motivation behind this work was to help future innovations to be even more powerful with the authors hoping that this study will contribute to the improvement and optimization of future CCR research.

Read our interview with the corresponding authors below.

Could you briefly explain the focus of your article?

Life cycle assessment was conducted for the Nobel Prize of Chemistry 2010, inventing the C-C cross coupling, which was seminal for modern synthesis of innovative chemicals and pharmaceuticals. It was aimed to assess the original strategy only, and not how it was improved in the almost four decades after, separating idea and translation of idea.

How would you set this article in a wider context?

Sustainability is typically measured when innovations turn into applications, meaning one decade or more later. This also mean that the industrial translation of the innovation is assessed, rather than the innovation itself. We have developed an intrinsic sustainability assessment of the innovation itself, exemplified at the paramount Nobel Prize innovations.

Can you express your view on the importance of metrics and analysis (techno, economic, ecological, etc) to the chemistry community?

While metrical analysis can judge on the sustainability achievement of a chemical innovation after its demonstration, we see the true value in the assessment shaping a chemical idea during its nascence and guiding it in its early moments.

What aspects of this work are you most excited about at the moment and what do you find most challenging about it?

Knowing that Nobel Prize innovations have highest esteem and demand for ultimate seriousness in discussion, we are excited to arguably have made an informative and balanced assessment. Challenging was to separate intrinsic and extrinsic effects, seeing that we need to neglect the chemical yield for the first, while this is crucial value for any chemical synthesis and its metrics.

What is the next step? What work is planned?

We like to make a follow-up paper with more generalised methodology, meaning tailored metrics for intrinsic value of innovations; published in Green Chemistry journal. In addition we will aim to assess precise challenging real world molecules that have been prepared using this idea.

Why did you choose to publish in Green Chemistry?

It is a top-tier, highly respected journal in Chemistry, open for cross-discipline, blue sky research, and has transparent, professional journal management.

Meet the corresponding authors.  

Prof. Volker Hessel studied chemistry at Mainz University. In 1994, he went to the Institut für Mikrotechnik Mainz GmbH. In 2002, he was appointed as vice director of R&D at IMM and became director of R&D in 2007 and in 2005, he started working at the Eindhoven University of Technology, Netherlands. He has been working at the University of Adelaide, Australia, as deputy dean (research) at the ECMS faculty and professor in pharmaceutical engineering since 2018, and as a part-time professor University of Warwick/UK since 2019.

Volker received the AIChE Excellence in Process Development Research Award, IUPAC ThalesNano Prize in Flow Chemistry. He is program lead in the ARC Centre of Excellence Plants for Space (P4S), and is Research Director of the Andy Thomas Centre for Space Resources. He received several EU’s research excellence grants (ERC Advanced/Proof of Concept/Synergy, FET OPEN). He was authority in a 35-teamed Parliament Enquete Commission “Future Chemical Industry”.

Prof. Luigi Vaccaro is a Full Professor at the University of Perugia where he is leading the Green S.O.C. group, http://greensoc.chm.unipg.it. He is Fellow of the Royal Society of Chemistry (FRSC) and he is currently appointed as Associate Editor of the RSC Advances and of Beilstein Journal of Organic Chemistry. His recognitions comprise the Europa Medal from the Society of Chemical Industry – London (2001), the ADP Award from Merck’s Chemistry Council for “Creative work in organic chemistry” (2006 and 2007), the G. Ciamician Medal of the Società Chimica Italiana (2007), the Lady Davis (2018) Visiting Professorship, the Pino Medal from the Organic and Industrial Divisions of the Italian Chemical Society. His research is aimed at developing different aspects of chemistry to define sustainable and optimized chemical processes. Luigi has published over 260 scientific contributions with an H-index of 58, and about 9000 citations.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Call For Papers: Advances in Electrosynthesis for a Greener Chemical Industry

Green Chemistry is delighted to announce a call for papers for its latest themed collection on Advances in Electrosynthesis for a Greener Chemical Industry to be promoted in late 2023 and Guest Edited by Jean-Philippe Tessonnier (Iowa State University), Season Si Chen (Tsinghua University), Vassiliki-Alexandra (Vanda) Glezakou (Oak Ridge National Laboratory), Adam Holewinski (University of Colorado, Boulder) and Juan Lopez-Ruiz (Pacific Northwest National Laboratory).

About this Themed Collection

This themed collection aims to highlight the recent advances on the electrosynthesis of chemicals and fuels. Electrosynthesis is a fast-expanding field of research that is poised to play a critical role in the decarbonization of the chemical industry and the transition to green transformations for chemical production. We encourage contributions on recent green advances in electrochemical transformations, including hybrid processes that combine electrochemical with photo- or biocatalytic (microbial) transformations, catalyst development, electrolyzer cell designs, computational studies, and techno-economic analysis (with a focus on environmental concerns or life-cycle analysis).

Preferred topics include but are not limited to:

  • Electrosynthetic reactions with substantial waste reduction and/or safety benefits over conventional thermochemical transformations, such as hydrogenation, oxidation/epoxidation, amination, halogenation, and other coupling reactions
  • Conversion and utilisation of biogenic feedstocks such as lignocellulosic biomass and its components, fermentation broths, bio-crudes, and bio-oils
  • Conversion and utilisation of aqueous waste streams, including nitrate-rich agricultural runoff, biomass pyrolysis water, and food processing waste streams
  • Conversion of synthetic waste such as (micro)plastics
  • Generation of renewable ammonia, natural gas, hydrogen, syngas, and fuels from biogenic and synthetic feedstocks
  • Capture and conversion of CO2 into products and energy carriers
  • Novel processes for sustainable energy storage and release
  • Development of new electrolyzer designs and configurations such as paired electrolyzers for greener processes

This call for papers is open for the following article types:

  • Communications
  • Full papers
  • Reviews

Open for Submissions until 15th June 2023

First papers published!

Read some of the first articles published in this Themed Collection:

And have a look at this Open Access Perspective

Read the full themed collection here

There is still time, submit your work!

If you would like to contribute to this themed collection, you can submit your article directly through the journal’s online submission service at https://mc.manuscriptcentral.com/gc. Please answer the themed collection question in the submission form when uploading your files to say that this is a contribution to the themed collection and add a “Note to the Editor” that this is from the Open Call. The Editorial Office reserves the right to check suitability of submissions in relation to the scope of both the journal and the collection, and inclusion of accepted articles in the final themed collection is not guaranteed.

Submissions to the journal should present a significant advance in green chemistry. Please see the journal’s website for more information on the journal’s scope, standards, article types and author guidelines. To be published, work must present a significant advance in green chemistry, focusing on an advance in the sustainability of the conditions, the efficiency of the process or provide insight into an important green process. Papers must contain a comparison with existing methods and demonstrate advantages over those methods before publication can be considered.

If you have any questions about the journal or the collection, please contact the journal inbox.

Looking forward to your submissions!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Chemistry Advisory Board member Sir Martyn Poliakoff wins 2019 RSC Longstaff Prize

 

Green Chemistry Advisory Board member Sir Martyn Poliakoff is a Longstaff Prize winner for his outstanding contributions to green chemistry and for participating centrally in the creation of the Periodic Table Videos.

Please join us in congratulating Sir Martyn Poliakoff on his achievements!

 

You can access papers by the 2019 RSC Prize and Awards Winners for free for a limited time. A full list of winners and more information about RSC Prizes and Awards can be found at: www.rsc.org/prizes-awards-2019.

*Access in free through a register RSC account – click here to register

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Solvents for Synthesis – Web collection

Green Chemistry cover image of a leafGreen Chemistry is pleased to announce the Green Solvents for Synthesis web collection is now online. This collection of articles is based on presentations at the Green Solvents for Synthesis meeting held in Dresden, Germany, October 2014. The Guest Editor is Professor Walter Leitner (RWTH Aachen, Germany), Chair of the Green Chemistry Editorial Board.

Below is a selection of some of the articles included in the themed collection and you access the full collection online.


Sponge-like ionic liquids: a new platform for green biocatalytic chemical processes

Pedro Lozano, Juana M. Bernal, Eduardo Garcia-Verdugo, Gregorio Sanchez-Gomez, Michel Vaultier, M. Isabel Burguete and Santiago V. Luis
Green Chem., 2015, 17, 3706-3717
DOI: 10.1039/C5GC00894H


Fluorous ethers
Angel S. W. Lo and István. T. Horváth
Green Chem., 2015, 17, 4701-4714
DOI: 10.1039/C5GC01345C


Polyol synthesis of nanoparticles: status and options regarding metals, oxides, chalcogenides, and non-metal elements
H. Dong, Y.-C. Chen and C. Feldmann
Green Chem., 2015, 17, 4107-4132
DOI: 10.1039/C5GC00943J


A virtual screening approach to identifying the greenest compound for a task: application to switchable-hydrophilicity solvents
J. R. Vanderveen, L. Patiny, C. B. Chalifoux, M. J. Jessop and P. G. Jessop
Green Chem., 2015,17, 5182-5188
DOI: 10.1039/C5GC01022E


A choline chloride/DMSO solvent for the direct synthesis of diformylfuran from carbohydrates in the presence of heteropolyacids

W. Ghezali, K. De Oliveira Vigier, R. Kessas and F. Jérôme
Green Chem., 2015,17, 4459-4464
DOI: 10.1039/C5GC01336D


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

“Happy Silver Anniversary”: Green Chemistry at 25

2016 is the Silver Anniversary for the field of Green Chemistry being 25 years since the term “Green Chemistry” was coined and defined in 1991. To mark this occasion, the 2016 Issue 1 of Green Chemistry features an Editorial looking at the journey of the field to date and introducing an initiative designed to stimulate discussion on the vision for the field. You can read the Editorial by Paul Anastas, Buxing Han, Walter Leitner and Martyn Poliakoff here.

We have asked colleagues from the Editorial and Advisory Board of Green Chemistry to comment on individual Principles that relate to their specific area of expertise and to share their personal views with our community.

Every month of 2016, Green Chemistry will feature one such perspective Editorial (collated online: rsc.li/gc-25years) hopefully initiating a lively exchange of views and ideas here on the Green Chemistry blog. We encourage you to use the comments facility below to share your views on each principle.

The Editorials are not meant to provide answers, but to stimulate questions on how the Principles have influenced research agendas, how they connect to challenges and opportunities that may not have been visible twenty five years ago, why they are still valid or what needs to be adjusted, etc..

Most importantly, the aim is to not primarily to look back in praise of the undisputable achievements, but to provide a vision towards celebrating the Golden Anniversary of the field in 2041 and beyond.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)