Author Archive

Hot paper: imprinting photonic crystalline polymer matrices via multiple UV polymerisations

Cholesteric liquid crystals (CLCs) show selective reflection due to their helical structures. They are formed by the introduction of chiral elements into liquid crystals molecules or by doping of nematic liquid crystals with chiral dopants. Photoresponsive chiral dopants are increasing being used to fabricate tuneable CLCs.

In this hot paper, Liu and colleagues use an imprinting method which used multiple UV-induced polymerisations. A helical polymer matrix was imprinted in the presence of a CLC. Desirable Bragg reflections were found, without any added liquid crystals or chiral compounds.

Fabrication and characterization of imprinted photonic crystalline polymer matrices via multiple UV polymerizations
J. Mater.  Chem., 2012, 22, 22446.  DOI: 10.1039/c2jm35151j
(free to read for a short time)

Follow the latest journal news on Twitter @JMaterChem or go to our Facebook page.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot paper: a CdSe nanocrstyal/C60-liquid composite

Combination of inorganic nanocrystals (NCs) and organic molecules into composites have shown a variety of novel optical and electronic properties. Many of these properties arise from the inter-phase energy transfer from the excited NCs to a semiconducting matrix.

In this hot paper, Nakanishi and co-workers report the fabrication of a composite material of CdSe NCs embedded in an alkylated room temperature liquid C60 derivate. The photoelectrochemical and optical properties of the composite are investigated. It is found that the optical properties can be tuned by selection of the NC phase. Electronic band alignment between the NCs and the C60 matrix enable inter-phase charge transfer, resulting in a long-lived charge transfer state. The composite shows potential for use in sensing applications and photoelectrochemical processes.

CdSe Nanocrystal/C60-liquid composite material with enhanced photoelectrochemical performance
J. Mater. Chem., 2012, 22, 22370.  DOI: 10.1039/c2jm35294j
(free to read for a short time)

Follow the latest journal news on Twitter @JMaterChem or go to our Facebook page.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot paper: Chemoselective functionalization of biomaterials

It is widely accepted that biomimetic culture systems should replicate natural tissues as closely as possible to promote optimal cell proliferation, migration, differentiation and survival. These systems are important for biomedical applications such as tissue engineering, biosensors and the development of cellular models of disease. There are many techniques (e.g. microcontact printing, photo- and nanolithography, inkjet printing and photoimmobilisation) that can spatially deposit bioactive molecules for the patterning and guidance of cells. These techniques can suffer from poor cytocompatibility and spatial resolution.

Work by De Bank’s group at the University of Bath reported in this hot paper describes the patterning of biomaterial matrices with multiple bioactive molecules using a caged aldehyde linker. This approach removes any possible unwanted reactivity with functional groups commonly found in biological systems. The authors report that the caged linker can be coupled to many different biomaterials and readily undergoes photolysis in aqueous media. It is suggested that this general approach will have applications in advancing many areas – tissue modelling, tissue engineering, biosensors and regenerative medicine.

A photocleavable linker for the chemoselective functionalization of biomaterials
J. Mater. Chem., 2012, 22, 21878. DOI: 10.1039/c2jm35173k
(free to read for a short time)

Follow the latest journal news on Twitter @JMaterChem or go to our Facebook page.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot paper: Fabrication of ZnO nanodisc arrays using nanoimprint lithography

Fabrication of ZnO nanodisc arrays is reported using nanoimprint lithography (NIL) mold obtained sub-100 nm pattern resolution by Srinivasan, Krishnamoorthy and co-workers.

ZnO nanostructures have many applications such as use in LEDs, gas sensors and semiconducting devices. Controlling the densities, geometric attributes and batch to batch reproducibility of nanostructured ZnO can be a challenge. In this hot paper, a generic process is described, using block copolymer assisted NIL, to produce high-resolution NIL molds for the production of ZnO nanodiscs. The authors also investigate the charge storage properties of the produced ZnO nanodiscs.

Macroscopic high density nanodisc arrays of zinc oxide fabricated by block copolymer self-assembly assisted nanoimprint lithography
J. Mater. Chem., 2012, 22, 21871. DOI: 10.1039/c2jm33444e

(free to read for a short time)

Follow the latest journal news on Twitter @JMaterChem or go to our Facebook page.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot paper: Bismuth acceptor doped barium titanate nanocrystal formulations

A thin film nanocomposite dielectric that can be prepared by deposition of Bi-doped BaTiO3 nanocrystals on to a polymer is reported by O’Brien and colleagues.

In this hot paper, the authors use a novel approach to synthesise bismuth acceptor doped nanocrystals, Ba(TixBi1-x)O3. The nanocrystals can be synthesised at low temperatures via a solvothermal method and are highly crystalline. The nanocomposite containing these nanocrystals, showed improved dielectric performance over BaTiO3 and in particular highly desirable capacitor characteristics.

Comprehensive dielectric performance of bismuth acceptor doped BaTiO3 based nanocrystal thin film capacitors

J. Mater. Chem., 2012, 22, 21862
DOI: 10.1039/c2jm34044e
(free to read for a short time)

Follow the latest journal news on Twitter @JMaterChem or go to our Facebook page.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Advance Articles now being published for Journal of Materials Chemistry A, B and C

Did you know that Advance Articles for our new family of Journal of Materials Chemistry journals have been published. Click on the covers below to view the Advance Articles:

Follow the latest journal news on Twitter @JMaterChem or go to our Facebook page.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot paper: Generating models of materials properties that link to biological effects

A simple yet powerful computational method of generating models that link microscopic or molecular properties of polymers to their biological effects has been reported by Winkler and co-workers.

At present the synthesis and characterisation of novel materials for tissue engineering is a time-consuming and costly process. In this hot paper, the adhesion of human embryonic stem cell embryoid bodies (hEB) to a large library of polymers is studied. Using a mathematical description of the molecular properties of the polymers, a novel method was employed to predict experimental hEB adhesion of the polymer library. This method was found to produce models that could accurately describe stem cell hEB adhesion on polymeric surfaces. The method could be used to predict polymers with improved properties for tissue engineering and other biomedical areas.

Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces
J. Mater. Chem., 2012, 22, 20902

DOI: 10.1039/c2jm34782b
(free to read for a short time)

Follow the latest journal news on Twitter @JMaterChem or go to our Facebook page.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

11th International Conference on Materials Chemistry (MC11)

In the 20th year of this international conference series, The 11th International Conference on Materials Chemistry (MC11) will bring together researchers to discuss four key areas of application of materials chemistry:

• Energy Materials
• Environmental Materials
• Biomaterials
• Electronic, Magnetic and Optical Materials

For our exciting list of plenary and keynote speakers visit www.rsc.org/mc11.  There will also be many opportunities for oral and poster presentations and discussion in the dedicated conference centre at the University of Warwick, UK.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

This week’s hot papers – Read for free until November 9th

Electronic structure engineering of lanthanide activated materials

This Highlight article by Pieter Dorenbos reviews new approaches to design novel lanthanide-based materials. He discusses methods and models to construct electron binding energy schemes which can be used to predict the properties, and therefore engineer, new materials.

J. Mater. Chem., 2012, DOI: 10.1039/C2JM34252A, Advance Article



Crystal structure of blue–white–yellow color-tunable Ca4Si2O7F2:Eu2+,Mn2+ phosphor and investigation of color tenability through energy transfer for single-phase white-light near-ultraviolet LEDs

Phosphor-converted LEDs that use a combination of blue InGaN chip and a yellow emitting Y3Al5O12:Ce3+ phosphors have low color rendering indices and high correlated color temperatures which are disadvantageous. In this hot paper, Huang, Chen and co-workers, synthesis a series of single-composition Ca4Si2O7F2:Eu2+,Mn2+ phosphors and investigate their crystal structures and luminescence properties. They find that the phosphors generate white-light and are emission-tunable by using a sensitizer Eu3+. The critical distance between Eu2+ and Mn2+ is investigated in relation to the energy transfer mechanism. The phosphor has potential uses as a phosphor-converted white-light near-UV LED.

J. Mater. Chem., 2012, DOI: 10.1039/C2JM33160H, Advance Article

High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries

In this hot paper, Jaekook Kim’s group at Chonam National University, Korea report the synthesis of a Na-ion cathode as a high performing alternative to the Li-ion cathodes currently popular in the field. The carbon-coated Na3V2(PO4)3 cathode is synthesised via a polyol-assisted pyro-synthetic reaction which reduces the sintering time and temperature. The resulting nanoparticles showed greatly improved electrochemical performances in a Na-ion cell.

J. Mater. Chem., 2012, 22, 20857-20860

Don’t forget to keep up-to-date with all the latest research you can sign-up for the Journal of Materials Chemistry RSS feed or Table of contents alert.

To keep up with the journal news you can Like us on Facebook or Follow us on Twitter.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Australia-India Joint Symposium on Smart Nanomaterials themed collection

The Journal of Materials Chemistry themed collection on the ‘Australia-India Joint Symposium on Smart Nanomaterials’ has been published. The papers in this themed collection are based on contributions from this symposium which was a forum for discussion about all aspects of nanoscience and nanotechnology.

Find the full collection description by Professor C.N.R. Rao (Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India) and the rest of the collection here.

The themed collection contains the following Application article:

Methane storage in metal organic frameworks

Kristina Konstas, Theresa Osl, Yunxia Yang, Michael Batten, Nick Burke, Anita J. Hill and Matthew R. Hill

J. Mater. Chem., 2012, 22, 16698-16708

And the front cover paper of Journal of Materials Chemistry Volume 22, Number 40:

Mercury vapor sensor enhancement by nanostructured gold deposited on nickel surfaces using galvanic replacement reactions

Ylias M. Sabri, Samuel J. Ippolito, Armand J. Atanacio, Vipul Bansal and Suresh K. Bhargava

J. Mater. Chem., 2012, 22, 21395-21404


Don’t forget to keep up-to-date with all the latest research you can sign-up for the Journal of Materials Chemistry RSS feed or Table of contents alert.

To keep up with the journal news you can Like us on Facebook or Follow us on Twitter.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)