Author Archive

Collection Celebrating the 2023 Nobel Prize in Physiology or Medicine: mRNA vaccines against COVID-19

We are delighted to share a cross-journal themed collection on mRNA vaccines against COVID-19, celebrating the 2023 Nobel Prize in Physiology or Medicine. Katalin Karikó and Drew Weissman were jointly awarded a Nobel Prize “for their discoveries concerning nucleoside base modifications that enabled the development of effective mRNA vaccines against COVID-19.” Royal Society of Chemistry journals congratulate both Nobel Laureates.

Understanding mRNA’s interaction with the immune system had a crucial role in accelerating vaccine development during one of the most significant health crises in contemporary history. This collection highlights recent advancements in mRNA technologies for vaccine development, covering mRNA delivery strategies, biomaterials, nanoparticles, and click chemistry.

Read the collection here.

A selection of articles from the collection is included below. All articles are free to access until 17th November. All Open Access journal articles are always free to access. We hope you will enjoy reading the articles in this themed collection. Please do share this collection with your colleagues and networks.

Reviews

A comprehensive overview of vaccines developed for pandemic viral pathogens over the past two decades including those in clinical trials for the current novel SARS-CoV-2

Kannan Damodharan, Gandarvakottai Senthilkumar Arumugam, Suresh Ganesan, Mukesh Doble and Sathiah Thennarasu

RSC Adv., 2021, 11, 20006-20035 DOI: 10.1039/D0RA09668G

 

Emerging mRNA technologies: delivery strategies and biomedical applications

Yufen Xiao, Zhongmin Tang, Xiangang Huang, Wei Chen, Jun Zhou, Haijun Liu, Chuang Liu, Na Kong and Wei Tao

Chem. Soc. Rev., 2022, 51, 3828-3845 DOI: 10.1039/D1CS00617G

 

Lipid-based colloidal nanoparticles for applications in targeted vaccine delivery

Muhammad Saad Khan, Sila Appak Baskoy, Celina Yang, Joohye Hong, Jayoung Chae, Heejin Ha, Sungjun Lee, Masayoshi Tanaka, Yonghyun Choi and Jonghoon Choi

Nanoscale Adv., 2023, 5, 1853-1869 DOI: 10.1039/D2NA00795A

 

Articles

A PEG-lipid-free COVID-19 mRNA vaccine triggers robust immune responses in mice

Min Li, Yixuan Huang, Jiacai Wu, Sanpeng Li, Miao Mei, Haixia Chen, Ning Wang, Weigang Wu, Boping Zhou, Xu Tan and Bin Li

Mater. Horiz., 2023, 10, 466-472 DOI: 10.1039/D2MH01260J

 

Towards mRNA with superior translational activity: synthesis and properties of ARCA tetraphosphates with single phosphorothioate modifications

Malwina Strenkowska, Joanna Kowalska, Maciej Lukaszewicz, Joanna Zuberek, Wei Su, Robert E. Rhoads, Edward Darzynkiewicz and Jacek Jemielity

New J. Chem., 2010, 34, 993-1007 DOI: 10.1039/B9NJ00644C

 

Development of a high-throughput platform for screening lipid nanoparticles for mRNA delivery

Lili Cui, Sara Pereira, Silvia Sonzini, Sally van Pelt, Steven M. Romanelli, Lihuan Liang, David Ulkoski, Venkata R. Krishnamurthy, Emily Brannigan, Christopher Brankin and Arpan S. Desai

Nanoscale, 2022, 14, 1480-1491 DOI: 10.1039/D1NR06858J

 

Enhanced immunogenicity induced by mRNA vaccines with various lipid nanoparticles as carriers for SARS-CoV-2 infection

Yanhao Zhang, Ji Wang, Hanlei Xing, Chao Liu, Wenhui Zha, Shuo Dong, Yuhao Jiang and Xinsong Li

J. Mater. Chem. B, 2023,11, 7454-7465 DOI: 10.1039/D3TB00303E

 

mRNA-carrying lipid nanoparticles that induce lysosomal rupture activate NLRP3 inflammasome and reduce mRNA transfection efficiency

James Forster III, Dipika Nandi and Ashish Kulkarni

Biomater. Sci., 2022, 10, 5566-5582 DOI: 10.1039/D2BM00883A

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Insights from the authors of a highly cited Materials Advances article

Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges has been one of the most highly cited articles published in Materials Advances so far. The authors have recently answered our questions, and in this blog, we are sharing the insights from our interview with them. We congratulate the authors on their impactful work and wish them success in their future academic research.

 

  • What aspect of your work are you most excited about at the moment?

Access to clean water is a growing global issue. A recent report by UNESCO reveals that 2 billion individuals do not have access to safe drinking water. Furthermore, the region where we reside (Saudi Arabia) has already declared a water-stress region. We are designing advanced membranes for desalination and water reuse, which may contribute to meeting global and regional demand in the future. Our research group is developing next-generation membranes using 2D materials. The 2D materials we use can be divided into two classes specifically for membrane applications. The first class has ordered pores, such as COFs and 2D MOFs, whereas the other type is intrinsically non-porous, such as graphene, MXenes, and TMDs. Our research group is working on tuning the interlayer distance of the non-porous 2D sheets to control the permeability and selectivity of these membranes according to the desired applications. We believe that the tunability of the 2D membranes makes them unique compared to the state-of-the-art commercialized polymeric membranes.

  • What do you find most challenging about your research?

Fouling remains a significant challenge in the implementation of membrane-based technology. Therefore, most of the industries still have not adopted membrane-based technology. 2D materials-based membranes look promising at the lab scale to develop antifouling membranes, but their processability and scalability would be challenging. Our research group is currently working on a lab scale at IRC-Membranes Water Security, KFUPM, but we are planning and working to bring them from the lab scale to the market.

  • What does it mean to you to have a highly cited article?

It is a gratifying experience for a researcher to receive recognition for his work from their peers in the same field.

  • How do you feel about Materials Advances as a place to publish research on this topic?

Materials Advances has emerged as a prestigious journal of the Materials family. Material Advances platform provides a distinctive opportunity for researchers to publish their latest findings in materials science. Due to its high-quality publications, this journal has become a hub of material science progress and knowledge.

  • Can you share one piece of career-related advice or wisdom with other early career scientists?

I advise early career researchers to identify global problems and research gaps and put their best efforts into solving them to become impactful. Do the brainstorming by What, why, and how. What is the problem, why is it, and how can it be solved? Keep pushing towards your goals and dreams, overcoming obstacles and challenges, until you can look back proudly on your journey.

Meet the authors

Dr Nadeem Baig is a Research Scientist III (Assistant Professor) at IRC-Membrane and Water Security, KFUPM. He obtained his BS (Hons.) from the University of the Punjab in 2008 and his MPhil from the University of Engineering and Technology, Lahore in 2012. He obtained his Ph.D. from KFUPM, Saudi Arabia, in 2017. Dr Baig joined the Center of Research Excellence in Desalination & Water Treatment at KFUPM in 2020 after working as a two-year postdoctoral researcher. His research is focused on developing next-generation membranes utilizing 2D materials, including graphene, MXene, TMDs, 2D MOFs, and COFs for oil/water separation, desalination, water reuse, and recovering precious metals. His interests also include developing nanostructured materials and super-selective surfaces for energy and environmental applications. He has received several distinguished awards. So far, Dr Baig has obtained 10 US patents. Dr Baig received the prestigious Early Career Research Award at KFUPM in 2022. His name was also included among the top 2% of scientists worldwide in the discipline of Chemistry.

 

Dr Irshad Kammakakam is an Assistant Professor in the Department of Chemistry at Nazarbayev University, Astana, Kazakhstan. Dr Kammakakam received his Ph.D. in Chemistry from Incheon National University, South Korea. His research focused on developing advanced organic porous materials and functional polymeric membranes for energy-saving separation technology and environmental green energy applications. Before joining Nazarbayev University, Dr Kammakakam was a Research Scientist at the Advanced Materials Chemistry Center, Khalifa University, UAE. He also worked as a Visiting Scientist at the Korea Institute of Science and Technology (South Korea). He completed multiple Postdocs at the European Institute of Membranes (France), the University of Alabama (USA), and the KAUST (Saudi Arabia). Dr Kammakakam broadly works to design and synthesize ionic polymers for molecular separation membranes and energy storage applications. Dr Kammakakam has bagged many awards and achievements, including the recipient of the 2020 Future Faculty Mentoring Program sponsored by the EdDiv of the American Institute of Chemical Engineers.

 

 

 

Dr Wail Sulaiman Falath is the Dean of the College of General Studies and an Assistant Professor at the Materials Science and Engineering Department of King Fahd University of Petroleum & Minerals. Dr Falath has a Ph.D. degree in Polymers, Textiles, and Fibers Engineering from Georgia Institute of Technology, USA. His Ph.D. was related to fabricating polymeric mixed matrix membranes for Reverse Osmosis water desalination. Dr Falath’s research is focused on the environment, synthesis of membranes for water desalination, and surface modifications and characterization of several materials.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Journal of Materials Chemistry C and Materials Advances welcomes Prof. Tetsuro Kusamoto to the Advisory Board

We are delighted to welcome Professor Tetsuro Kusamoto from Institute for Molecular Science to our Journal of Materials Chemistry C and Materials Advances Advisory Board.

Professor Tetsuro Kusamoto, Institute for Molecular Science, Japan

Professor Tetsuro Kusamoto received his Ph.D. from the University of Tokyo in 2010. He started his academic career as a postdoctoral researcher at RIKEN (2010-2012). After six years as a project assistant professor and an Assistant Professor at the University of Tokyo, he began his independent academic career in 2019 as an Associate Professor at Institute for Molecular Science, National Institutes of Natural Sciences.

We took this opportunity to ask Professor Kusamoto a few questions and find out what he thinks:

  •   What does it mean to you to join the Advisory Board of Journal of Materials Chemistry C and Materials Advances?

It is a fantastic opportunity to experience cutting-edge material science and contribute to its advancement.

  • What is the current biggest challenge you face in your field?

Understanding how the spin degree of freedom based on assembled spins affects materials’ electronic excitation, excited state, and relaxation dynamics.

  •  What advances in your field are you most excited about?

I’m excited about truly two-dimensional ferromagnetism realized by the monolayer of chromium tri-iodide (CrI3) .

Check out some of Professor Kusamoto’s recent publications in Royal Society of Chemistry journals:

S. Kimura, S. Kimura, K. Kato, Y. Teki, H. Nishihara, T. Kusamoto “A Ground-State-Dominated Magnetic Field Effect on the Luminescence of Stable Organic RadicalsChemical Science, 2021,12, 2025-2029.

S. Mattiello, F. Corsini, S. Mecca, M. Sassi, R. Ruffo, G. Mattioli, Y. Hattori, T. Kusamoto, G. Griffini, L. Beverina “First Demonstration of the Use of Open-Shell Derivatives as Organic Luminophores for Transparent Luminescent Solar Concentrators” Materials Advances, 2021,2, 7369-7378.

S. Kimura, S. Kimura, H. Nishihara, T. Kusamoto “Excimer Emission and Magnetoluminescence of Radical-Based Zinc(II) Complexes Doped in Host CrystalsChemical Communications, 2020,56, 11195-11198.

Join us in welcoming Professor Kusamoto to our Advisory Boards!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Professor Magdalena Titirici is in the Highly Cited Researcher list

We are delighted to announce that our recently retired Associate Editor for Journal of Materials Chemistry A and Materials Advances, Professor Magdalena Titirici, was included in the annual Highly Cited Researcher list recently released by Clarivate!

Titirici Group

 

We interviewed Professor Titirici to take this opportunity to find out more about her recent work and the challenges she faces in her field.

Please could you provide a short summary of your most recent work?

My most recent work has been on two fronts: (1) Raising awareness on the importance of developing more sustainable batteries. I am currently researching Na, K and Al based systems as well as looking to reduce the amount of Li in Li-S batteries; (2) Turning waste (biomass or plastic) with electricity into high value chemicals and fuels.

What is the current biggest challenge you face in your field?

The biggest challenge is the complexity of electrochemical devices with many components and interfaces in between. Most groups are studying one individual component at the time (either the anode, cathode, electrolyte, current collector, etc). This makes progress too slow. We need a holistic system approach, but the complexity of the many interfaces resulting from putting various components together hinders progress. Yet these interfaces are interdependent and should be understood cooperatively. In addition, there is no standardisation on how measurements on electrochemical performance should be done in various fields. Consequently, the data published in the literature are often inaccurate and difficult to reproduce due to the different ways of making, assembling, and measuring various components and devices. I think we need to learn from other fields such as pharma industry, and bring in robots that are able to perform laborious task to do the synthesis, characterisation, and assembly. Such robots should operate hypothesis driven based on the knowledge already developed in the literature by many individual research groups. This new way of working would eliminate errors and help standardisation of electrochemical measurements and data sharing. Human researchers should instead focus on developing tools for the complex data analysis from high throughput experimentation and on understanding the fundamental science for optimisation and new discoveries with the help of computational approaches. Funders, can we please get a robot in each electrochemical laboratory in the world? 😊

What advances in your field are you most excited about?

I am very excited about all the recent developments on Na ion batteries from fundamentals up to higher TRL level at cells and packs. I am equally excited about the boom in research on electrochemical driven processes to make our future chemicals and fuels.

What does it mean to you to be a Highly Cited Researcher?

It is an interesting question. Today, researchers are told that citations, a high h-index and impact factors of journals are not a measure of research quality. I think they need to be used carefully and will depend a lot on the area of research. I work on materials for energy, which is a popular topic these days, so I guess it is easier for me to be highly cited compared to peers working in other areas. Yet, within my research field, I see it as a recognition of all the team efforts from my past and current research group members and collaborators. For me, it is a testimony that best research is done collaboratively working in very diverse teams. It would be nice if Clarivate could come up with a way of awarding teams rather than individuals.

Why is it important and what advice would you give to up-and-coming scientists hoping to increase their visibility?

Be true to yourself, your values, and your beliefs. There are a lot of good and supportive people in academia, and fortunately, this trend is on the rise. Find them, work with them, and build your network of trust, scientific excellence and human kindness. Be supportive of those who need and value your advice, build a diverse scientific community, and the rest will follow naturally. But even more importantly, don’t forget to also have a life outside work.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Our Associate Editor Professor Kisuk Kang is in the Highly Cited Researcher list

We are delighted to announce that our Associate Editor for Journal of Materials Chemistry A and Materials Advances, Professor Kisuk Kang, was included in the annual Highly Cited Researcher list recently released by Clarivate!

Professor Kang answered our questions and told us about his recent work and the challenges he faces in his field.

Please could you provide a short summary of your most recent work?

I have been working on the discovery of new electrode chemistry for lithium-ion batteries and elucidating the limitations of conventional electrodes by combined first-principles calculations and experiments. Recently, we discovered a new iron-based compound that exhibits unusually high specific capacity, which could be possible by cumulatively harnessing the capacity from both conversion and intercalation reactions. While employing these two reactions in a reversible way has been challenging, we succeeded it by exploiting a new amorphous framework.

What is the current biggest challenge you face in your field?

Breaking the energy density ceiling of current lithium-ion batteries is one of the most essential tasks for the wide employment of electric vehicles and large-scale energy storage. We are revisiting the current lithium-ion batteries with respect to the degradation mechanism or synthetic route in order to provide a breakthrough solution by employing new capabilities of characterizations such as in situ TEM and theoretical tools.

What does it mean to you to be a Highly Cited Researcher? Why is it important and what advice would you give to up-and-coming scientists hoping to increase their visibility?

As a scientist, the dissemination of new knowledge is important, and good science deserves better exposure. I am grateful for having been selected as a Highly Cited Researcher for the last five years. I will keep trying to address the current important challenges for batteries and, in the course of it, hope to share the new findings with colleagues in the field through publications.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)