‘Training’ a memristive network

Researchers in Italy and Germany have developed an organic memristive device that mimics the adaptive processes occurring in nervous systems such as the human brain. The work is one of the main findings of the European Commission’s Seventh Framework Programme Future and Emerging Technologies-Open project which has brought together physicists, chemists, neuroscientists and mathematicians to create breakthroughs in information and communication technologies.

Memristors (‘memory resistors’) are electronic elements with a resistance which is a function of the charge passing through them. Importantly, when the current is removed, the memristor retains this final resistance, providing a capability similar to a biological synapse. The team, led by Victor Erokhin at the University of Parma, incorporated a conducting polymer memristor into a self-assembling stochastic 3D network reminiscent of the brain’s random distribution of neurons and the connections between them.

Spaghetti analogy for training the polymer network. Top: The main components of the organic memristive device. Bottom: Italian children learn that spaghetti can only be eaten with forks (strong association), whereas foreigners in Italy also can eat spaghetti with forks, but upon returning to their own country may begin to use spoons again (dynamic adaptation).

Spaghetti analogy for training the polymer network. Top: The main components of the organic memristive device. Bottom: Italian children learn that spaghetti can only be eaten with forks (strong association), whereas foreigners in Italy also can eat spaghetti with forks, but upon returning to their own country may begin to use spoons again (dynamic adaptation).

 Read the full article at Chemistry World.

Stochastic hybrid 3D matrix: learning and adaptation of electrical properties
Victor Erokhin,  Tatiana Berzina, Konstantin Gorshkov, Paolo Camorani, Andrea Pucci, Lucia Ricci, Giacomo Ruggeri, Rodrigo Sigala and Almut Schuez
J. Mater. Chem., 2012, Accepted Manuscript
DOI: 10.1039/C2JM35064E

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)