Archive for the ‘Uncategorized’ Category

Green Chemistry 2017 Emerging Investigators themed issue now online!

We are delighted to announce that the inaugural Green Chemistry Emerging Investigators 2017 themed issue is now online and free to access until the end of August 2017.

This issue highlights the excellent research being undertaken by the rising stars of the green chemistry field from across the globe. All contributors were nominated by a member of the Green Chemistry Editorial or Advisory Board as an outstanding researcher in the early stages of their independent career, making a significant contribution to the advancement of green chemistry.

Congratulations to all of those whose work is featured in the collection and we hope you enjoy reading it.

Read the full collection online

It includes:

Editorial
Green Chemistry Emerging Investigators 2017 themed issue
Green Chem., 2017, 19, 2707-2710. DOI: 10.1039/C7GC90063E

Perspective
Green chemistry and polymers made from sulphur
Max J. H. Worthington, Renata L. Kucera and Justin M. Chalker
Green Chem., 2017, 19, 2748-2761. DOI: 10.1039/C7GC00014F

Tutorial Review
Metal–organic frameworks meet scalable and sustainable synthesis
Patrick A. Julien, Cristina Mottillo and Tomislav Friščić
Green Chem., 2017, 19, 2729-2747. DOI: 10.1039/C7GC01078H

Paper
Phenolic acetals from lignins of varying compositions via iron(III) triflate catalysed depolymerisation
Peter J. Deuss, Christopher S. Lancefield, Anand Narani, Johannes G. de Vries, Nicholas J. Westwood and Katalin Barta
Green Chem., 2017, 19, 2774-2782. DOI: 10.1039/C7GC00195A

Paper
Biphasic extraction of mechanocatalytically-depolymerized lignin from water-soluble wood and its catalytic downstream processing
Gaetano Calvaruso, Matthew T. Clough and Roberto Rinaldi
Green Chem., 2017, 19, 2803-2811. DOI: 10.1039/C6GC03191A

Paper
Base-catalysed, one-step mechanochemical conversion of chitin and shrimp shells into low molecular weight chitosan
Xi Chen, Huiying Yang, Ziyi Zhong and Ning Yan
Green Chem., 2017, 19, 2783-2792. DOI: 10.1039/C7GC00089H

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Continuous processing and flow chemistry in the pharmaceutical industry themed issue now online

We are pleased to announce the Green Chemistry themed issue on Continuous processing and flow chemistry in the pharmaceutical industry is now online.

Guest-edited by Stefan Koenig (Genentech, a member if the Roche Group) and Helen Sneddon (GlaxoSmithKline and Green Chemistry Editorial Board), this themed issue aims to showcase recent advances in the field of continuous processing and flow chemistry technology in drug discovery and development.

It includes:

Editorial
Recent advances in flow chemistry in the pharmaceutical industry
Stefan G. Koenig and Helen F. Sneddon
Green Chem., 2017, 19, 1418-1419. DOI: 10.1039/ C7GC9017A

Communication
The scale-up of continuous biphasic liquid/liquid reactions under super-heating conditions: methodology and reactor design
Francesca Mandrelli, Alessia Buco, Lorenzo Piccioni, Florian Renner, Bertrand Guelat, Benjamin Martin, Berthold Schenkel and Francesco Venturoni
Green Chem., 2017, 19, 1425-1430. DOI: 10.1039/C6GC02840C

Paper
Development of a concise, scalable synthesis of a CCR1 antagonist utilizing a continuous flow Curtius rearrangement
Maurice A. Marsini, Frederic G. Buono, Jon C. Lorenz, Bing-Shiou Yang, Jonathan T. Reeves, Kanwar Sidhu, Max Sarvestani, Zhulin Tan, Yongda Zhang, Ning Li, Heewon Lee, Jason Brazzillo, Laurence J. Nummy, J. C. Chung, Irungu K. Luvaga, Bikshandarkoil A. Narayanan, Xudong Wei, Jinhua J. Song, Frank Roschangar, Nathan K. Yee and Chris H. Senanayake
Green Chem., 2017, 19, 1454-1461. DOI: 10.1039/C6GC03123D

Paper
A laboratory-scale annular continuous flow reactor for UV photochemistry using excimer lamps for discrete wavelength excitation and its use in a wavelength study of a photodecarboxlyative cyclisation
Erica N. DeLaney, Darren S. Lee, Luke D. Elliott, Jing Jin, Kevin I. Booker-Milburn, Martyn Poliakoff and Michael W. George
Green Chem., 2017, 19, 1431-1438. DOI: 10.1039/C6GC02888H

Read the full collection online now.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Professor Khaled Belkacemi among shooting victims in Québec

The green chemistry community mourns the loss of Professor Khaled Belkacemi of Laval University in Québec, Canada. His contributions in the area of heterogeneous catalysis for biomass conversion and food chemistry help the drive to make the world a greener place. Unfortunately, violence against Muslims took his life at a mosque in Québec on the 29th of January. We mourn his passing, send our condolences to his family and colleagues, and hope that the future will bring us greater tolerance as well as a greener society.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Chemistry Impact Factor increases to 8.506

Green Chemistry is pleased to announce its Impact Factor has increased to 8.506*.

Green Chemistry continues to lead the field as the home of cutting-edge science for the development of alternative sustainable technologies. Our broad scope and the interdisciplinary nature of research published in the journal, coupled with our rigorous peer review and rapid times to publication, ensures your work will quickly attract the attention it deserves.

As we celebrate the Silver Anniversary of the green chemistry concept, our esteemed Editorial and Advisory Board members revisit the 12 principles of green chemistry and look ahead to the future of the field. Read the Editorials in our special online collection.

We would like to thank all our authors, readers, reviewers and Editorial & Advisory Board members for making Green Chemistry a unique forum for research that enables a greener sustainable future

*The Impact Factor provides an indication of the average number of citations per paper. Produced annually, Impact Factors are calculated by dividing the number of citations in a year, by the number of citeable articles published in the preceding two years. Data based on 2015 Journal Citation Reports® (Thomson Reuters).

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Advisory board member Professor Sir Martyn Poliakoff wins Lord Lewis Prize

A picture of Martyn PoliakoffMartyn Poliakoff is well-known both for his academic work and for his incredibly popular series of Periodic Videos. His research bridges the interface of chemistry and engineering, making chemical processes more environmentally friendly, by replacing the solvents used in reactions with greener alternatives. This work will provide society with more sustainable ways to produce the chemicals that we need. His major contribution has been in the use of supercritical fluids (gases compressed until they are as dense as liquids), particularly supercritical carbon dioxide or steam, as solvents for chemical reactions involving hydrogen or oxygen with organic compounds. The Lord Lewis Prize, which is awarded every two years, is given for distinctive and distinguished chemical or scientific achievements, together with significant contributions to the development of science policy.

To read more about Professor Sir Martyn Poliakoff and the 2016 Lord Lewis Prize please click-through to the website.

Related content:
All 2016 Royal Society of Chemistry prize and award winners: http://rsc.li/awards-prizes-2016
Collection of articles published by prize and award winners: http://rsc.li/rscwinners2016-collection

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Chemistry Strategies for Drug Discovery

It is rapidly becoming clear that by incorporating green chemistry techniques earlier in drug development, pharmaceutical companies can greatly speed the production of a drug candidate.

Integrating green chemistry protocol into the drug discovery discipline is a relatively new phenomenon, as the scale at which chemists operate in drug discovery is smaller than in process and manufacturing chemistry.

Written by experts pioneering green chemistry efforts within their own institutions, Green Chemistry Strategies for Drug Discovery provides a practical guide illustrating to both academic and industrial labs how to implement greener process approaches for the greatest return on their investment, and without slowing down their science.

The Editors have taken a comprehensive approach to this emerging field, covering the entire drug discovery process from molecule conception, through synthesis, formulation and toxicology, with specific examples and case studies where green chemistry strategies have been implemented. They also address cutting-edge topics like biologics discovery, continuous processing and intellectual property.

Green Chemistry Strategies for Drug Discovery is the newest publication in the RSC Drug Discovery series. Further details on the content and scope of this book can be found on its Books Publishing page. If you like what you read, Green Chemistry Strategies for Drug Discovery is available now as a hardback from our Royal Society of Chemistry Bookshop. It is also in our 2015 eBook collection.

Front cover of "Green Chemistry for Drug Discovery"

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Recent HOT GC Articles

Check out the following HOT articles, these have all been made free to access for a limited time:

Recycling of rare earths from NdFeB magnets using a combined leaching/extraction system based on the acidity and thermomorphism of the ionic liquid [Hbet][Tf2N]
David Dupont and   Koen Binnemans
Green Chem., 2015,17, 2150-2163
DOI: 10.1039/C5GC00155B

Upgrading biogenic furans: blended C10–C12 platform chemicals via lyase-catalyzed carboligations and formation of novel C12 – choline chloride-based deep-eutectic-solvents Upgrading biogenic furans: blended C10–C12 platform chemicals via lyase-catalyzed carboligations and formation of novel C12 – choline chloride-based deep-eutectic-solvents
Joseph Donnelly, Christoph R. Müller, Lotte Wiermans, Christopher J. Chuck and Pablo Domínguez de María
Green Chem., 2015, Advance Article
DOI: 10.1039/C5GC00342C

From simple organobromides or olefins to highly value-added bromohydrins: a versatile performance of dimethyl sulfoxide
Song Song, Xiaoqiang Huang, Yu-Feng Liang, Conghui Tang, Xinwei Lia and Ning Jiao
Green Chem., 2015, Advance Article
DOI: 10.1039/C5GC00184F

Extraction and separation of neodymium and dysprosium from used NdFeB magnets: an application of ionic liquids in solvent extraction towards the recycling of magnets
Sofía Riaño and Koen Binnemans
Green Chem., 2015, Advance Article
DOI: 10.1039/C5GC00230C, Paper

Greening the global phosphorus cycle: how green chemistry can help achieve planetary P sustainability
Paul J. A. Withers, James J. Elser, Julian Hilton, Hisao Ohtake, Willem J. Schipper and Kimo C. van Dijk
Green Chem., 2015,17, 2087-2099
DOI: 10.1039/C4GC02445A, Perspective

Stimuli-responsive/rheoreversible hydraulic fracturing fluids as a greener alternative to support geothermal and fossil energy production Stimuli-responsive/rheoreversible hydraulic fracturing fluids as a greener alternative to support geothermal and fossil energy production
H. B. Jung, K. C. Carroll, S. Kabilan, D. J. Heldebrant, D. Hoyt, L. Zhong, T. Varga, S. Stephens, L. Adams, A. Bonneville, A. Kuprat and C. A. Fernandez
Green Chem., 2015, Advance Article
DOI: 10.1039/C4GC01917B, Paper

Fluorine gas for life science syntheses: green metrics to assess selective direct fluorination for the synthesis of 2-fluoromalonate esters
Antal Harsanyi and Graham Sandford
Green Chem., 2015, Advance Article
DOI: 10.1039/C5GC00402K, Paper

Layered MoS2 nanoparticles on TiO2 nanotubes by a photocatalytic strategy for use as high-performance electrocatalysts in hydrogen evolution reactions
Chenhui Meng, Zhaoyue Liu, Tierui Zhang and Jin Zhai
Green Chem., 2015, Advance Article
DOI: 10.1039/C5GC00272A, Communication

Ionic liquid-stabilized nanoparticles as catalysts for the conversion of biomass
K. L. Luska, P. Migowski and W. Leitner
Green Chem., 2015, Advance Article
DOI: 10.1039/C5GC00231A, Critical Review


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Chemistry themed issue on Elemental Recovery and Sustainability now online

Issue 4 of Green Chemistry is a part themed issue on ‘Elemental Recovery and Sustainability focusing on how we can develop methods to ensure that elements are available for use by future generations through sustainable use and recovery.

The guest editors for this themed collection are James Clark (University of York, UK), Andrew Hunt (University of York, UK), Avtar Matharu (University of York, UK) and Alex King (Ames Labs, USA), read their editorial for free here.

The outside front cover of the issue features the Critical Review “Bio-derived materials as a green route for precious & critical metal recovery and re-use” by Jennifer R. Dodson, Helen L. Parker, Andrea Muñoz García, Alexandra Hicken, Kaana Asemave, Thomas J. Farmer, He He, James H. Clark and Andrew J. Hunt. In this article they give an overview of research in critical and precious metal recovery using biosorption, application to real-life wastes and uses of the metal-loaded materials.

The inside front cover of the issue features the Paper “Recycling of rare earths from NdFeB magnets using a combined leaching/extraction system based on the acidity and thermomorphism of the ionic liquid [Hbet][Tf2N]” by David Duponta and Koen Binnemans. In this article they describe how a new recycling process was developed to recover rare earths from roasted NdFeB magnets using the thermomorphic and acidic properties of the ionic liquid [Hbet][Tf2N] to achieve a combined leaching/extraction system.

These two articles are free to access until 15th May and there are also a number of open access articles within the issue:

Greening the global phosphorus cycle: how green chemistry can help achieve planetary P sustainability” by Paul J. A. Withers, James J. Elser, Julian Hilton, Hisao Ohtake, Willem J. Schipper and Kimo C. van Dijk.
Chameleon behaviour of iodine in recovering noble-metals from WEEE: towards sustainability and “zero” waste” by Angela Serpe, Americo Rigoldi, Claudia Marras, Flavia Artizzu, Maria Laura Mercuri and Paola Deplano.
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Sleeping sickness fly trap in a nutshell – GC article in Chemistry World

Written by Charlie Quigg

An international team of chemists has developed a green method for creating odour attractants to trap the insects that spread African sleeping sickness.

Sleeping sickness or African trypanosomiasis is transmitted by tsetse flies and is a threat to millions of people, and their livestock, across sub-Saharan Africa. Trapping these flies can reduce the number of sleeping sickness cases. Unfortunately, the odour attractants that draw the flies in are often prohibitively expensive – barring buffalo urine, which has unfortunate hygienic and olfactory detractions – limiting their use…

Tsetse flies feed on the blood of vertebrate animals © Image Quest Marine/Alamy

Interested to know more?

Read the full article by Charlie Quigg here

Read the research article in GC:

Synthesis of tsetse fly attractants from a cashew nut shell extract by isomerising metathesis

S. Baader, P.E. Podsiadly, D.J. Cole Hamilton and L.J. Goossen

Green Chem., 2014, Advance Article
DOI: 10.1039/C4GC01269K

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Driving towards success with biomass-derived petrol – GC article in Chemistry World

Chinese scientists have overcome previous limitations to generate high octane number petrol from biomass-derived γ-valerolactone (GVL), an organic compound that is already often blended in small amounts with petrol or diesel. Using an ionic liquid catalyst, the conversion churned out a 2,2,4-trimethylpentane-rich substance with an octane number of 95.4, the highest reported for biomass derived fuel.

GA

Process for converting GVL into high octane number petrol

Petrol, the liquid many of us use to run our cars, is typically obtained from fossil fuels. But, with energy demands rocketing, producing a renewable and sustainable alternative has become a challenge for many researchers…

Interested to know more?

Read the full article by Anisha Ratan in Chemistry World here…

Read the article in GC:

Conversion of biomass derived valerolactone into high octane number gasoline with an ionic liquid
Jiayu Xin, Dongxia Yan, Olubunmi Ayodele, Zhan Zhang, Xingmei Lu and Suojiang Zhang
Green Chem., 2015, Advance Article
DOI: 10.1039/C4GC01792G

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)